Monotoring of Wetland
Vegetation Distribution and Change by using Microwave Sensor Data
Yoshifumi
Yasuoka1, Yoshiki Yamagata1, Masayuki
Tamura1, Mikio Sugita1 Jatuporn
Pornprasertchai2, Supapis Polngam2, Rachen
Sripumin2 Hiroyuki Oguma3 and Xidong
LI4 Abstract
1. National Institute for Environmental Studies 16-2 Onogawa, Tsukuba, Ibaraki 305 Japan 2. National Research Council 196 Phaholyortin Rd., Bangkhen, Bangkok 10900, Thailand 3. National Space Development Agency, EORC 4. 7-15-17 Roppongi, Minato, Tokyo 106 Japan 4. Pasco Corporation 1-1-2 Higahiyama, Meguro, Tokyo, Japan The purpose of the study is to investigate remote sensing methodologies for monitoring actual vegetation distribution and its change in wetland by utilizing microwave sensor (SAR) data from ERS1 and JERS-1 together with optical sensor data from LANDSAT TM, JERS-1 OPS and SPOT HRV The study includes the investigation on the microwave/landcover interaction mechanism in vegetated areas and also the development of the algorithms for vegetation classification by using SAR data. First, the relation between SAR image intensities and vegetation types and conditions has been investigated based on a set of ground survey data and overlayed satellite imageries from L-band SAR (JERS-1), C-band SAR (ERS-1), JERS-1 OPS, LANDSAT TM and SPOT HRV. Next several SAR data processing methods for vegetation classification have been investigated. Vegetation classification methods include both of the statistical approaches and texture analysis approaches. The methods were applied to the data at Kushiro Mire in Hokkaido, Japan and Prachuap Khirikhan Wetland in Thailand. It was found that there is no clear relation between vegetation types and single SAR data in both of JERS-1 and ERS-1 SAR whereas combination of multi-seasonal SAR data is very effective for actual vegetation classification in wetland areas. The difference between JERS-1 and ERS-1 SAR data for wetland vegetation classification has been also investigated. 1. Introduction Wetland is one the most valuable ecosystem on the earth. If abounds biological and are treasure houses of living things. Also today the importance of wetland is pointed out as a major emission source of methane which is one of the green house gases. As changes in wetlands are rapid and serious due to various human activities, it is urgent to monitor wetlands and their surrounding environment from physical, biological or social viewpoints. Ground survey of wetland is, however, not easy because of its difficulty of approach there (1). Remote sensing is expected to provide us an efficient tool for monitoring wetland environment. In particular, as wetland is characterized by a mixture of vegetation, soil and water, microwave remote sensing is expected to delineate the relation between them. This paper describes remote sensing methodologies for monitoring wetland environment with special emphasis on the application of SAR data of vegetation classification. This study has been conducted as a part of the Joint Research between national Institute for Environmental Studies (NIES), Japan and National Research Council of Thailand (NRCT) sponsored by the Special Co-ordination Funds of Science and Technology Agency of Japan, and Also as a part of the JERS-1 Research Announcement (RA) program by National Space Development Agency (NASDA) of Japan. First, the relation between SAR image intensities and vegetation types and conditions has been investigated based on a set of Ground survey data and overlayed imageries from ERS-1 SAR, JERS-1 SAR and OPS LANDSAT TM and TM and SPOT HRV. And next several data processing methods have been developed for the classification of SAR data. Vegetation classification methods include both of the statistical approaches and texture analysis approaches, and they have been applied to a single SAR image and also to a set of multi seasonal SAR images. Two test sites, Kushiro Mire in Hokkaido, Japan and Prachuap Khirikhan Wetland in Thailand were selected as test for the study. In this paper the results as Kushiro Mire are primarily described Kushiro Mire is the biggest wetland in Japan and its extent is around 29,000 ha. The dominant species in vegetation are Sphagnum, Sedge, Reed and Alder. Kushiro Mire has been facing serious environmental problems due to regional developments. It was found that there is no distinctive relation between vegetation types and single SAR data in both of JERS-1 and ERS-1 SAR whereas. One of the reasons for it is that SAR data reflects land surface conditions including water inundating or soil moisture condition as well as vegetation conditions. The difference between JERS-1 and ERS-1 SAR data for wetland vegetation classification has been also clarified. 2. Over lay Analysis between Vegetation and SAR Images Satellite imageries from JERS-1 SAR, ERS-1 SAR, LANDSAT TM and SPOT OPS, and other landcover data including vegetation maps were registered each other, and relation between them were analyzed. At Kushiro Mire, first, in order to get base data for wetland vegetation distribution, vegetation were classified into seven categories including Sphagnum, Sedge, Reed, Alder, open water, forest and others by using three season LANDSAT TM imageries from spring, summer and autumn in1991which represent the seasonal variations of vegetation conditions (Fig. 1). Three dates images were registered each other and combined into eighteen bands images. Here, for each date image, six bands (Band 1-5 and 7) from visible and near-infrared were used for classification. The maximum likelihood classification (MLC) scheme was applied to the combined eighteen bands images with more than ninety training areas, Ground survey data was used for selecting the training areas for the classification Figure 1: Vegetation map of Kushiro Mire obtained from three seasons LANDSAT TM data.
Figure 2: PCA image of three seasons JERS-1 and ERS-1 SAR images (6bands). Figure 3: PCA image for three seasons SAR data. (a) JERS-1 SAR, (b) ERS-1 SAR. 3. Vegetation Classification using SAR images
Figure 6: Maximum likelihood classification of three seasons SAR images. (a) JERS-1 SAR, (b) ERS-1 SAR images. 4. Conclusions The study investigated the possibility of applying the SAR data to vegetation classification. In particular, wetland vegetation was focused as a case study. The results are summarized as follows
Acknowledgment The study was partially conducted based on the Special Co-ordination Funds by Science and Technology Agency of Japan, and also partially conducted as a JERS-1 RA program with NASDA on wetland monitoring. We are grateful to Mr. T. Moriyama of NASDA for his kind support for the joint research References
|