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  ABSTRACT 
  A moving target will cause changes in the chirp signal coefficients of signals received by synthetic aperture radar 
(SAR). By computing these coefficients, we can find the speed of a moving target speed. This paper describes a 
new approach for estimating the doppler coefficients. The approach uses the sub-aperture interferometry scheme to 
estimate the chirp signal coefficients. A closed-form expression that describes the relationship between the phase 
differences and the chirp signal parameters is also derived. It is well known that the radar interferometry can 
provide the phase differences, but contains the inherent noise. Multi-looking process is one way to reduce the 
noise deviations, but the measurable spans will become smaller. This can be improved by adopting multi-scale 
sub-aperture interferometry scheme, as proposed in this paper. Unwrapping the phase differences, we will thus be 
able to recover the chirp signal coefficients from alias estimates. The maximum measurable span of the coefficients 
will be significantly larger. Numerical illustrations of the effectiveness of our method are provided. 
  

? . Introduction 
By using match filters, the SAR process the chirp signal producing an accurate, high resolution images. The 

presence of moving targets induces unwanted phase variations, range migration and image degradations. In other 
words, images that are smeared and ill-positioned with respect to the stationary background are caused. Hence, it  is 
necessary to estimate the relationship between a moving target and the antenna, to improve the SAR imaging 
(Patrick, 1988; Soumekh, 1994). These estimates also allow us to determine a moving target’s velocity, which is the 
purpose of this paper. 
  There has been much work on how to estimate the phase coefficients. Based on the fact that a moving target and 
its stationary background will induce different doppler spectra, some detection methods were proposed  (Raney, 
1971; Freeman 1987). These methods require the use of a high pulse repetition frequency (prf). They perform 
poorly, as moving targets have only small velocity components in range direction. Werness et al.(1990) proposed an 
algorithm that can produce a fine resolution SAR image of moving targets by assuming multiple prominent points, 
which can be separated and have no phase interference with each other. These requirements are generally not met 
when range migration occurs or the spatial resolution is not fine enough. Chen et al.(1992) and Soumekh(1994) 
have described the relationship between the phase coefficients and the center frequency of doppler spectra based on 
the short time Fourier transform(STFT). It is well known that the STFT resolution is limited, in both the time and in 
the frequency domain. Furthermore this method suffers from smearing and side-lobe leakage. Other methods using 
maximum likelihood estimation perform well at low SNR(Besson, 1999; Peleg, 1991; Barbarossa, 1992), but they 
have a highly computational complexity. 
  We can obtain the phase differences by the interferometry operation,. Then we can derive the signal coefficients 
from these phase differences(kuo, 2000). However, the interferometry operation causes the noise deviations to 
become larger, which leads the estimation to fail. Lee et al.(1994) have proved that multi-look processing can 
improve the phase accuracy, and we have determined that the sub-aperture interferometry scheme can decrease the 
noise deviation. 
  This paper describes an estimation algorithm to find the chirp signal coefficients, based on sub-aperture 
interferometry scheme. Basically, the phase of the observed signal sequence may be modeled as a polynomial 
signal embedded in complex Gaussian noise. Since the received signals are wrapped by 2p  , which results in 

aliases for the estimates when the phase differences are larger than 2p , this can come from the sub-apertures sizes, 
the moving target speed and the SAR system (i.e. wave length, sample spacing and SAR velocity). Thus, the speed 
of moving targets can only be estimated within some range, hence the measurable span becomes smaller, the 
reduction of which comes from the sub-aperture size being used. The above dilemma is easily resolved by using a 
multi-scales sub-apertures interferometry scheme, followed by unwrapping the difference of wrapped phase. The 
use of this method can effectively reduce the effect of the sub-aperture sizes. We were able to recover the chirp 
signal coefficients from the alias estimates. Therefore, the maximum measurable span of the coefficients were 
larger than when only the interferometry operation is used. 
 



  

  ? . Joint parameter estimation using multi-scale sub-aperture interferometry 
  2.1. Multi-scale sub-aperture interferometry 

  A stationary target area is assumed, for a broadside SAR geometry. During data acquisition, a dynamic target 

with a constant velocity is assumed to move with respect to a stationary background. We denote the target’s 

velocity vector as (vx, vy), which represents the components of the velocity in the directions of the range and the 

azimuth respectively. We denote the speed along the direction of the radar track to be U. Then the relation between 

those variables can be expressed as:  

 
(vx, vy)=(aU, bU)                                                                       (1) 

 

where (a, b) are ratios between two vectors, normally, |a| and |b| <<1. As mentioned above, we know that (a,b) is 

nearly constant during the integration time of the azimuth compression processing. The relationship between an 

antenna and a moving target can be expressed as a function of distance(kuo,2000): 
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where  

R
r

 is the vector of the distance from target to radar, 

       A(t) is the amplitude of the signal, 

       ?  is the wave length of the antenna. 

  Y is sample space for the synthetic aperture of SAR, 

      210 ,, fff are its initial phase, initial frequency and frequency rate, respectively, 

      )(Yψ  is the phase of the signal, 
      n(Y) denotes zero mean complex Gaussian noise. 

  This is the linear FM form of the signal, where A(Y) is a nuisance parameter and will not be estimated. The first 

part of eq.(2) gives the initial phase value for the target’s slant range in the broadside position. The second term is 

the doppler shift caused by the target’s velocity component in the slant range. The third term is the target’s and the 

antenna’s velocity component at the azimuth. 

  For any given sub-aperture length? , the estimates of the parameters of g(Y), in theory, are(kuo,2000): 
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  Where )(Nφ∆ ?are the phase differences from the frequency rate with a sub-aperture size N, )(~ Nφ∆ ?are the 
phase differences from the initial frequency with sub-aperture size N. The limits in (kuo,2000) be improved by 
using multi-scale sub-apertures? 1=N1y and? 2=N2y. We can then resolve the difference relation between N1 and N2 

by unwrapping the differences.  
  However, due to the inherent wrap-around effect of the above method, we observe the phase differences located 
at )(Nφ∆ ∈ [0,2p ]. The actual values above are =∆ )(Nϕ  )()(2 NNk φπ ∆+ for some integer k. Supposed 



  

that the two sub-aperture length? 1 and? 2 are used, we can then obtain two sets of phase differences (possibly 

aliased). Hence, there exists k(? )∈ Z such that:  
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From the above equations, we can obtain the coefficients: 
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  Where the sub-aperture lengths are given. Then, the phase differences can be obtained using the sub-aperture 
interferometry scheme. Thus, we only need to solve the differences between k1 and k3 or k2 and k4. Then, we can 
obtain the coefficients of the chirp signal and we can adopt phase unwrapping to solve the above equations. 
 
  3.2. Phase unwrapping 
  In section? , we have defined sub-aperture size η=N*y. Phase unwrapping is the process of estimating )(Nϕ∆  

from )(Nφ∆ , by estimating the integer k(N). N is the number of sub-aperture samples, which should be 
sufficiently large for statistic significance (i.e. on an sample average operation); On our algorithm, the meaning of 
N is different from other method, in which N denotes the position within the sampled signals. Let the difference 

operator ?  is defined as 
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Because the values of the difference in the interval πϕπ ≤∆∇<− )}({ N , which implies that 

)()1(0 NkNk −+=  then: 
 

)}({)}({ NN φϕ ∆∇=∆∇                                                              (13) 
 
eq.(13) states that the phase )(Nϕ∆  can be unwrapped by integrating the wrapped differences )(Nφ∆ (Itoh, 

1982; Ghiglia, 1998).  
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    where   

  )( 0Nϕ∆  denotes the initial phase 



  

  N0 denote the initial number of sub-aperture samples                  
   
  There are two factors that will affect the results of the phase unwrapping operation. One is phase aliasing, and the 
other is noise. Noise can cause a catastrophic failure during phase unwrapping. In our algorithm, we can reduce the 
noise effect by averaging all available phase differences. Phase aliasing can be produced from a smaller sampling 
signal set or inappropriate interferometry operations. According to sampling theory, more than two samples of the 
highest frequency component per period must be obtained. The Nyquist rate defines this minimum sampling rate. 
Alternatively, sampling at the Nyquist rate is equivalent to constraining the phase change to less than radians per 
sample (in magnitude) everywhere. In our algorithm, we assume that the SAR signals should satisfy this condition. 
The factors of the interferometry operation include the signal properties of 2f and 1f , or the sub-aperture lengths. 
We summarize the effects of the phase unwrapping performance as follows: 
The unwrapping process is to compare )1( +∆ Nφ and )(Nφ∆  with the threshold . Depending on the value of the 

difference, k(N) is decremented or incremented. Unwrapping failures occur when πφφ f)()1( NN ∆−+∆ , 

where the absolute value increases with the signal parameter values of 2f , 1f . While the absolute value increases, 
less noise can be tolerated for correct unwrapping. Hence, the performance of the estimator depends on the 
coefficients, the sub-apertures lengths and the signal to noise ratio. The measurable span of coefficients 2f , 1f  are 

confined by πφφ p)()1( NN ∆−+∆ .  

  Next, we will test the algorithm. We use ERS SAR as the simulation system to illustration the process. We also 
assume that the electromagnetic behavior of the moving targets is similar to the one point scatter response. The 
magnitude of the slant range is 8.4848e+005 meters, the aircraft altitude is 800000 meters, the azimuth sample 
space is 3.990574 meters, the total sample number is 1068, the platform ground speed is 6.699028e+03m/sec, the 
platform heading is 192.036610832947 o, the radar wavelength is 0.056666 meters, the target heading is 161o. 
Assuming that the moving target’s velocity varies from -150m/sec to 150m/sec, we can find the frequency rate 2f . 

The estimated results for 2f̂  are plotted in Figure 1.(a). Similar to the previous method(kuo,2000), the estimated 

results agree very well with the true coefficients. The initial frequency f1 and the estimated results of 1̂f are 

displayed in Figure 1.(b). By comparing Figure 1, with Figure 2, (sub-aperture interferometry scheme) we find that 
the maximum measurable span of the coefficients 1f  within the multi-scale sub-aperture interferometry is 
significantly larger than for the algorithm merely adopts sub-aperture interferometry.  
 

 ? . CONCLUSION 

In this paper, we develop an algorithm that can estimate the coefficients of the chirp signal in SAR. Through 
the above analysis, we have proven the relationship between the phase difference and the chirp signal coefficients. 
We then obtain the target velocity. The estimated coefficients can also be used to refine image quality. Finally, we 
apply the algorithm to estimate the target speed for simulated data from ERS SAR signals. The computers 
simulation results agree very well with the theoretically-derived performance. We find that the maximum 
measurable span for this algorithm of the target’s velocity component at the azimuth is almost without limit. On the 
other hand, the maximum measurable span of the target’s velocity component at the slant range is restricted by the 
wavelength of the SAR system, the SAR velocity and the sample spacing.  
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