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Abstract. Neural networks are growing in popularity today as a tool for classification of remotely sensed images. 
Majority of the neural network applications involve the error backpropagation algorithm for training the network to 
work as a classifier. While this algorithm has been successfully employed in various image classification problems, the 
errors associated with per-pixel classifier still persist, even if on a smaller scale than other methods. The contextual 
information embedded in a pixel’s neighbourhood is a powerful mechanism to exploit the local knowledge and correct 
the errors. In this paper, the neural network output is scaled and input to the contextual classifier based on probabilistic 
relaxation labeling algorithm. The approach is tested using an IRS image and the results indicate that there is an 
improvement in classification accuracy over the conventional maximum likelihood method. 
 
1. INTRODUCTION 
 
Remotely sensed images are a valuable source of spatial data for a variety of natural resources management and 
environmental monitoring tasks. With developments in the sensor and computing technologies, some approaches to 
data analysis and information extraction, not attempted earlier, become feasible now. Artificial neural networks and 
contextual classification can be mentioned as examples of beneficiaries of the technological developments. Both are 
highly computation intensive and amenable to parallel and distributed implementation. It is illustrated in this paper that 
analysis of remotely sensed images using artificial neural networks, followed by contextual refinement is useful for 
improving accuracy of image classification.  
 
As seen in Fig. 1 below, the neural net classified image is refined further using contextual information present in a pixel 
and its immediate local neighbourhood.  
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Fig. 1 Schematic Diagram of Proposed Methodology 
 
 
Details of the standard feedforward neural network training using the backpropagation algorithm are too well known to 
warrant repetition here. Interested readers are referred to Yegnanarayana (1999) and Haykin (1994) for detailed 
exposition to this topic. 
 
 
 
 



2. CONTEXTUAL REFINEMENT OF NEURAL CLASSIFICATION 
 
Contextual information is inherently used by the human visual system while inferring the contents of the scene 
presented to it. In the domain of remote sensing, the context exists in the form of the label or class attached to pixels 
and their neighbours. It is an important fact that is not taken into consideration in pixel based classifiers that an image is 
comprised of regions or spatially adjacent groups of pixels where each region has pixels of the same class. The 
interclass compatibility and incompatibility place constraints on the likely class of a pixel given the class labels of its 
neighbours. The relaxation labeling framework (Rosenfeld and Kak, 1082) is used for this purpose. 
 
2.1 Probabilistic relaxation labelling algorithms  
  
Relaxation labelling schemes can be explained in four major steps: 
 
1. Initialization of the class probabilities of the pixels  
2. Specification of the interclass compatibility matrices 
3. Computation of the class probability updates based on contextual support  
4. Assessment of the impact of contextual refinement 
 
Relaxation labelling is an iterative approach to image classification which assigns a set of probabilities pi

 to every pixel 
i such that  
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L is the total number of classes. Pi(λ ) is the probability that pixel i belongs to class λ . The classification of the pixels 
is iteratively updated such that the class assigned to a pixel is consistent with the classes present in the neighbourhood. 
The class probabilities are iteratively updated by pooling the neighbourhood support for every class at each pixel: 
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qi(λ ) is the support received by i from the neighbours for label λ . After a number of iterations, for every pixel i, some 

label (or class) λk  will have highest probability (close  to 1) compared to other labels and pixel i can be assigned to the 
class k with little ambiguity. 
In natural scenes, very often the presence of a particular class at a pixel necessitates or precludes the occurrence of 
some other class in the neighbourhood. For example, a pixel of the class building needs another class road in the 
vicinity. Similarly a class desert precludes the probability of having a class forest in the neighbourhood. These 
constraints are numerically represented as compatibility coefficients, denoted by rij ( , )λ λ′ . The notation reads as 

compatibility of label λ  at i with label ′λ  at neighbouring pixel j. For every pair (i,j) we have an L * L matrix of the 
compatibility coefficients. 
                       
The support  any neighbour offers is dependent on its label probabilities and the compatabilities between different label 
pairs belonging to the pixel under consideration and its neighbour. Stronger the compatibility between the label pair 
( , )λ λ′  and higher the label probability p j ( )′λ , more is the support offered by the neighbour j through the particular 

label ′λ  to label λ  at i. This requirement is satisfied by the form  
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where q ij ( )λ  is the average support received from the neighbour j by pixel i for label λ  through all labels of j. Since 

p sj ( )′λ  act as nonnegative weights in summing rij ( , )λ λ′  over ′λ , the range of  q ij ( )λ  is the same as that of 

rij( , ).λ λ′  The total support received by pixel i for label λ  through the entire neighbourhood is obtained by combining 

all the individual neighbour supports as follows: 
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where d j ≥ 0 and d j

j
∑ = 1 . It is common to use }{d j N i= 1

( ) where is the set of neighbours of i and |.| denotes the 

cardinality of the argument set. The second way to combine the supports is  
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Rosenfeld et al. (1976) have combined the neighbour supports and label probabilities pi

k(λ ) according to the rule 
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The denominator acts as a normalising factor such that 
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Here it is assumed that 0 1≤ ≤q i ( ) ,λ  which will be true if nonnegative compatibility coefficients are used. It can be 
seen from this expression that if the neighbour support is strong, then the updated probability will be larger than the 
prior to updating, and if the neighbour support is weak, then the updated probability will be smaller than that prior to 
updating. After a number iterations , for pixel i, some label λi  will have largest probability, significantly higher than 
that of any other label, which may be taken as the convergence point.  
 
Since the relaxation process is iterative in nature, it needs an initial labelling to start with. The initial probabilities are 
computed in different ways for different applications. For the problem at hand, the responses of the output nodes of the 
neural network d i(λ) are used to compute initial probability p 0 ( )λ  as  
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Where d i ( )λ  is the output of the neural network of pixel i for the class λ. 
                     
The compatibility coefficients represent the label compatibility information quantitatively. These are defined in various 
ways, depending on the application. Pe leg (1978) have suggested that the compatibilities may be modelled as mutual 
information between label λ  at i and label ′λ  at j. They also suggested alternatively, correlation coefficients to 
represent the compatibilities. In our case, using a priori knowledge about relative likelihoods of cooccurrence of 
different classes, a matrix of compatibilities is prepared, having three types of values - (-1 for extreme incompatibility), 
(0.5 for modest compatibility) and (1 for full compatibility). Further, these compatibilities are taken to be the same for 
all neighbour pairs irrespective of their relative positions.  
 
2.2 Issues in contextual refinement by relaxation labelling 
 
The processes taking place during relaxation labeling can be described as a mixture of inter-label competition and co-
operation. Compatible labels mutually reinforce each other to occur at neighbouring positions, while competing labels 
try to suppress the other. One of the drawbacks of such processes is the erosion of object boundaries, particularly when 
the objects are small in size. The larger and stronger classes tend to overgrow and erode and eventually gobble up small 
regions in the neighbourhood. This is often the case if relaxation labeling iterations are allowed to run for ten or more 
iterations.  



An obvious remedy for this problem is to protect the boundary pixels of objects. For instance, if certain pixels are 
identified as boundary pixels, the label updation step can be controlled by 
 

a) entirely leaving out the boundary pixels, allowing them to retain the initial labels  
b) scaling the neighbour support by a factor  (<1) specified by the user 
c) a mixture of both (a) and (b) 

 
In this paper both (a) and (b) are evaluated towards protecting boundary pixels. 
 
The edge pixels in this study are identified using Canny operator (Canny, 1986) to mark edge and non-edge pixels. The 
hysterisis thresholds are selected in such a way that only the major edges are extracted. It is also possible to determine 
the boundary pixels on the basis of observing the responses of the output nodes of the neural network: boundary pixels 
are often mixed pixels having more than one category within its area and more than node would produce significant 
response. By observing the difference of the significant and next most significant node responses, pixels can be marked 
as edge pixels where the difference is smaller than a user specified threshold (0.1 – 0.2). The latter criterion was not 
attempted in this study, and will be pursued in a future study. 
 
3. RESULTS AND DISCUSSION  
 
The above methodology is tested using a subimage from IRS-1A scene covering northern part of Mumbai city. Seven 
major landuse/landcover classes are identified from the image, viz., Forest, Vegetation, Marshy land, Builtup / Open 
area, Dense builtup area, Clear water, and Polluted water. The major landmarks in this image are the Thane creek on 
the right, and the three lakes on the left - Powai, Vihar, and Tulsi. 
 
The overall accuracy is shown in table 1. For comparison purposes, the conventional maximum likelihood classification 
was also carried out on the data. The scheme proposed here has promise, and is being investigated further, particularly 
from the point of view of protecting linear features, weak classes etc.  
 
The original image of the area is shown in Figure 2 as a standard false colour composite. The classified image using 
neural network  is shown in Fig. 3a and the post-processed image using relaxation labeling in Fig. 3b. Approximately 
4400 pixels are reclassified out of an approximate 181,000 in this process. No particular pattern was identified but 
generally these pixels tended to be along the class boundaries. Seven iterations of the relaxation labeling algorithm 
have been run on the neural network output a fter rescaling it. 
 

 

                              Algorithm 
 

         Overall accuracy(%) 

MLC 91.6 
 

RLT 94.7 
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Fig. 2. ORIGINAL IRS COLOR COMPOSITE 
 
 
 
 
 



                               
 
 
Fig. 3a MLC PER-PIXEL CLASSIFICATION                      Fig. 3b CLASSIFICATION USING RLP TECHNQUE 
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