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ABSTRACT: In this paper, we describe a new change detection method that determines the date at which land-use 
changes occur in a sequential series of Landsat TM images.  We use this approach to extract annual rates of land 
conversion in the Pearl River Delta, China, for the period 1988-1996.  The technique is a three-step change detection 
procedure that uses time series and panel econometric methods.  First, regression equations are estimated for each 
of the six TM bands for unchanged, stable land-cover classes.  Second, the regression equations for these stable 
land-cover classes are used to calculate DN values for change classes for each of the eight possible dates of change 
(1989-1996).  Lastly, the year of land-use change is identified by comparing a pixel’s DN values against the eight 
possible dates of land conversion using tests for predictive accuracy.  The accuracy of the dates of land-use change 
identified by the econometric technique is upwards of 85 percent.  Additionally, the econometric technique may 
reduce efforts required to assemble the training data and to correct the images for atmospheric effects. 
 
1 INTRODUCTION 
 
Statistically coupling time series of satellite images with time series of economic and demographic data can provide 
insight on the relation between economic activity and land-use change. Time series data for many socioeconomic 
variables are available from a variety of sources (e.g. statistical yearbooks) at annual frequencies.  To use these data 
in statistical analyses, estimates of rates of land-use change must also be available at annual frequencies.  This 
presents a methodological difficulty.  Most change detection techniques are designed to analyze two or three 
images.  Computationally, repeated applications of these techniques can introduce errors associated with post-
classification comparison of images.  This paper describes a method that uses econometric techniques to determine 
the date at which land-use changes occur in nine images (1988-1996) of the Pearl River Delta China.  
 
2 DATA AND DATA PREPROCESSING 
 
Our remote sensing data consists of nine predominantly cloud-free Landsat TM images of the Pearl River Delta in 
Southern China (Table 1).  Eight images are georeferenced to the 1992 master image with a Universal Transverse 
Mercator (UTM) map projection provided by the Institute for Remote Sensing Application in Beijing.  The images 
are resampled to 30- by 30-m pixels using a nearest neighbor resampling algorithm with a first order polynomial.  The 
number of ground control points (gcp) used for the registration varies by image, and in all but one case, the root 
mean square error (RMSE) of the registration process is less than a third of a pixel (Table 1). To correct for changes 
in atmospheric conditions, illumination angles, and seasonal variation across the images, a relative radiometric 
normalization technique is used (Song et al., 2001).  Based on fieldwork and visual interpretation of the images, we 
identify 809 sites with 7807 pixels for training and testing. The sites are distributed among seven stable and sixteen 
change land-cover classes (Table 2).  Of the sixteen change land-cover classes, ten of them are land-use change 
classes (marked in bold). 



  

 

 
Acquisition date   Number of gcp’s for registration Geometric Registration RMSE 

10 December 1988   25 ± 0.2893 
13 December 1989   23 ± 0.2914 

30 October 1990   18 ± 0.2364 
02 February 1991   18 ± 0.2412 
20 January 1992   16 master image 

24 December 1993   20 ± 0.2618 
08 November 1994   17 ± 0.3162 
30 December 1995   24 ± 0.2970 

03 March 1996   25 ± 0.2776 
Table 1.  Characteristics of  TM images used in the study 

 
 Stable Classes Sites Change Classes Sites  

 water 34 water to fish pond 22  
   water to agriculture 48  
   water to transition 36  
   water to urban 26  
 forest 31 forest to water 21  
   forest to transition 36  
   forest to urban 18  
 shrub 35 shrub to water 14  
   shrub to transition 33  
   shrub to urban 23  
 fish pond 22 fish pond to  transition 12  
 agriculture 117 agriculture to water 26  
   agriculture to fish pond 34  
   agriculture to transition 83  
   agriculture to urban 47  
 transition 28 transition to urban 24  
 urban 39    

Table 2. Stable and Change Land-Use Classes, and Number of Training Sites for Each Class 
 
The stable classes are self-explanatory except for the transition class, which represents land where the previous 
land-cover has been removed, but the structures associated with the new use have not been put in place. Each of 
the 469 change sites is assigned a date at which land-use changes occur based on a visual interpretation of the 
images.  An analyst who visited the study area twice and is familiar with the region evaluated the nine images to 
identify the year (hereafter termed date of change) in which the first pixel within the site changed.  A second label is 
attached to 39% of the sites in which all of the pixels do not change simultaneously.   
 
3 CHANGE DETECTION METHODOLOGY 
 
The econometric change detection technique uses time series and panel techniques to identify the date of land 
conversion for individual pixels in three-steps.  In the first step, regression equations are estimated for each of the 
six TM bands for each of the seven stable land-cover classes.  In the second step, the estimated regression 
equations for each class are used to calculate DN values for change land-cover classes for each of the eight possible 
dates of change.  In the third step, the date of change is identified by comparing a pixel’s DN values against the 
eight possible dates of change using tests for predictive accuracy.  
 
3.1 Models of Stable Land-Use 
 
For each of the seven stable land-use classes, six regression equations are estimated that specify DN values for TM 
Bands 1-5 and 7 as follows:  
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in which DN is a time series for the DN value for band i (i = 1-5, 7) at time t (t= 1988-1996) for stable land class j 
(j=1,…7), X is a vector (3 x 9) of time series for physical variables thought to effect reflectivity (solar zenith angle 
[SZA], aerosol optical depth [AOD], and minimum DN [Min DN]) value for that band), Y is a vector (6 x 9)  of six 
dummy variables (January, February, March, October, November, December) for the month the image is obtained 
(the dummy variable for the month when the image is obtained has a value of 1 and a value of zero for the other five 
dummy variables), β and γ are vectors of regression coefficients, and µ are a time series of error terms. 
 
Equations 1-6 are estimated with a fixed effect estimator to account for the spectral heterogeneity of land-cover 
classes and unobservable variables.  A random effects  estimator also can be used, but the results would be nearly 
identical to the fixed effects estimator because the elements of the X vector do not vary among pixels within 
individual images.  To estimate the fixed effect estimator, the data are transformed such that the mean value of a 
variable for a pixel is removed from the nine annual observations of the variable for that pixel (Hsiao, 1986).  For 
example, the transformed DN value for Band 1 is given by (DN1tj - D N 1 j ) where: 
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1
N
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in which N is the number of observations per pixel (9).  The independent variables are transformed using a similar 
procedure, as indicated by the * in equations 1-6.  Because of these transformations, equations 1-6 do not contain 
an intercept.  Equations 1-6 can be estimated individually using OLS, but the regression results may be inefficient 
because the errors (µ) for individual equations within a given land-cover class may be correlated due to the 
correlations that exist among bands 1-5, and 7.  To avoid this potential source of inefficiency,  equations 1-6 are 
estimated as a system of seemingly unrelated regressions (SUR).  This procedure is repeated for each of the seven 
stable land-cover classes.  The estimates for β and γ along with the values for  X and Y variables are used to 
calculate the transformed DN value for each stable land-use class for each image.  The transformed values are 
converted back to levels using equation 7.  
 
3.2 Models Of All Possible Dates Of Land-Use Change 
 
The DN values for each stable land-use class are combined to calculate DN values for each of the sixteen land-cover 
change classes  (Table 2).  To represent the eight possible dates of change, the DN values for the stable land classes 
are spliced together at each of eight points.  To represent the DN values associated with a 1990 date of land-use 
change for the agriculture to urban class, the DN values generated by the agriculture regression equations for 1988 
and 1989 are combined with the DN values generated by the urban regression equations for the years 1990 through 
1996.  This process is repeated to generate a model for the agriculture to urban class for each of the eight possible 
dates of change between 1989 and 1996.  This process is repeated to generate a model for each date of change for 
each of the sixteen land-cover change classes, including the ten land-use change classes. 
 
3.3 Identifying The Date Of Land-Use Change With Tests Of Predictive Accuracy 
 
These models serve as ideotypes against which each pixel can be compared to determine the date of change.  For 
each pixel in a change class, its DN values are compared against the eight models for that change land-cover class, 
each of which represents one of eight possible dates of change.  For a pixel in the agriculture to urban class, its DN 
values are compared to values generated by the stable agriculture and urban regression equations that are spliced 
together in 1989, or 1990,… ,1996. The model that best describes a pixel’s date of change is chosen using a test of 
predictive accuracy.  The test compares the difference (d) in the absolute value of the forecast errors, which is  given 
by: 
 

   d it = DN it − D ˆ N itj − DNit − D ˆ N itj+1 (8)  
in which DN is the DN value for pixel i at time t, D ˆ N itj is the DN value predicted for pixel i at time t that changes 

between stable land-use classes at time j and D ˆ N itj+1
 is the value predicted for pixel i at time t that changes between 

stable classes at time  j plus 1.  Following Diebold and Mariano (1995), the values of d are weighted and summed as 
follows: 
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I+(dt ) =1 if d t > o

= 0 otherwise  
to calculate the s3a statistic which can be compared against a t distribution.  The s3a test statistic weighs the value 
of d using a binary choice (zero or one), that is determined by the model for the date of change that has the smaller 
absolute forecast error.  This binary choice is weighted by the rank order of the errors.  The model with the smaller 
forecast error is indicated by the sign on the s3a test statistic.  The test statistic will be negative if the absolute 
forecast error associated the model that represents the change in land-use at date j is smaller than the absolute 
forecast error associated the model that represents the change in land-use at date j+1.  The date of change is chosen 
based on the model that ‘best’ describes a pixel’s DN values as indicated by the value of the s3a statistic that 
exceeds a threshold for statistical significance. 
 
The threshold for statistical significance that is used to distinguish among competing mo dels is chosen empirically 
based on the trade-off between the fraction of pixels for which a date of change can be identified and the accuracy of 
that date of change.  A rigorous threshold (e.g., p < 0.05) allows can differentiate between competing dates of change 
with a high degree of confidence.  However, for many pixels, the s3a statistic may not be able to differentiate 
competing models with a high degree of confidence.  Under these conditions, the methodology can not assign a date 
of change and the pixel’s date of change is unclassified.  Alternatively, most of the pixels can be classified by using a 
relatively low threshold (e.g., p < 0.5) to distinguish between competing models.  However, a low threshold may 
increase the probability of falsely detecting change.   
 
4 RESULTS 
 
The regression results for the six regression equations for each of the seven stable land-cover classes are 
statistically meaningful.  Results for the stable agriculture class are shown in Table 3 and are similar to those 
obtained for the other six classes.   
 
 Band 1 Band 2 Band 3 Band 4  Band 5 Band 7 
AOD 0.05 

(42.0) 
0.01 
(8.4) 

0.01 
(4.6) 

-0.02 
(-2.2) 

-1.98 
(-7.1) 

0.02 
(11.0) 

SZA 359.17 
(36.4) 

-54.24 
(-8.1) 

-96.24 
(-7.2) 

-142.46 
(-1.8) 

1390.57 
(8.1) 

39.88 
(2.5) 

MINDN 0.69 
(16.6) 

-0.07 
(-1.6) 

0.39 
(6.2) 

0.72 
(3.3) 

350.75 
(7.1) 

 

JAN -53.95 
(-37.4) 

-9.47 
(-11.5) 

-14.66 
(-8.5) 

16.59 
(2.1) 

1201.29 
(7.2) 

-17.05 
(-8.6) 

MARCH -35.28 
(-35.7) 

7.14 
(11.6) 

10.59 
(8.9) 

3.32 
(0.5) 

194.27 
(6.3) 

-1.23 
(-0.8) 

OCT -30.19 
(-34.0) 

3.27 
(5.2) 

6.29 
(4.9) 

18.06 
(2.4) 

219.64 
(6.4) 

-5.75 
(-4.0) 

NOV -29.05 
(-34.6) 

4.72 
(10.8) 

8.34 
(9.3) 

8.43 
(1.4) 

397.49 
(6.8) 

-2.58 
(-2.5) 

DEC 17.50 
(26.8) 

-1.91 
(-6.4) 

-2.17 
(-4.3) 

-7.35 
(-3.7) 

404.39 
(7.2) 

6.04 
(9.8) 

r2 0.27 0.13 0.12 0.12 0.03 0.16 
t statistics in parenthesis;  values in bold exceed the p<.05 threshold 

Table 3.  SUR Regression Results for the Stable Agriculture Land-Cover Class 
 
The regression coefficients associated with the independent variables generally are statistically different from zero 
(p < .05) as indicated by a t test.  The sign on the regression coefficients cannot be used to evaluate their 
consistency with theory.  The images are corrected for atmospheric effects therefore, the regression coefficients 
represent the effect of errors in these corrections and the effects that are not corrected fully by the techniques for 
atmospheric correction.  The r-squared for all equations ranges from 0.03 to 0.64.  The lower range of values is 
consistent with the transformation used to calculate the fixed effects estimator. 
 
The fraction of change pixels for which the econometric technique identifies a date of change, which is termed the 
percent classified, is negatively related to the threshold used to determine the statistical significance of differences 
between competing models (Table 4).  No pixels are classified when  a rigorous threshold is used (t=2.4, p < .05).  As 
the threshold is lowered to p < .1, the fraction classified rises, and exceeds 95 percent when the threshold is lowered 
to p < .50.   



  

 

 
Threshold Percent 

Classified 
Exactly 
Correct 

Possibly 
Correct 

1.95  (p < 0.1) 54 57 84 
1.75 (p < 0.14) 75 47 71 
1.50 (p < 0.19) 82 50 75 
1.25 (p < 0.26) 86 50 74 
1.00 (p < 0.36) 90 50 73 
0.75  (p < 0.49) 96 50 72 
0.50  (p < 0.64) 97 51 71 
0.25 (p < 0.81) 98 51 66 
0.10 (p <0.92) 99 51 64 

Values in bold exceed the p < 0.05 threshold 
Table 4.  Results for the Econometric Time Series Technique 

 
The econometric method’s accuracy is evaluated two ways.  One measures the fraction of pixels classified for which 
the methodology identifies the date of change correctly.  Depending on the threshold used to determine statistical 
significance, the econometric technique correctly identifies the date of change for 47 to 57 percent of the pixels 
classified.  
 
The accuracy also can be measured by the fraction of pixels that may be classified correctly.  As described 
previously, all pixels in a site are assigned the same date of change, although the pixels in 39% of the sites do not 
change simultaneously.  This staggered change implies that a pixel’s date of change may be later than the date 
assigned to all pixels in the site.  Under these conditions, the focus on a single date of change may systematically 
understate each method’s accuracy.  To account for this bias, a second measure of accuracy is calculated.  If a pixel 
is assigned a date of change that occurs after the date assigned to the entire site, and if our visual examination of 
that site indicates that the pixels do not change simultaneously, the pixel’s date of change is considered to be 
identified correctly.  Defined this way, this measure gives an upper bound on each method’s accuracy.  Using this 
measure of accuracy, the econometric technique identifies the correct date of change for 64 – 84 percent of the pixels 
classified. 
 
5 DISCUSSION 
 
The ability to generate statistically meaningful estimates for Equations 1-6 implies that the method used to calibrate 
the images fails to eliminate differences associated with solar zenith angle and aerosol optical depth. The regression 
coefficients for these variables would be statistically insignificant if the ‘ridge’ correction technique eliminated 
systematic differences in the reflectivity among images.  This failure also is indicated by the statistically significant 
regression coefficients associated with the minimum DN values and the dummy variables for the month of 
acquisition.  
 
This failure may be obviated by the econometric technique.  Many techniques for atmospheric correction to calibrate 
images use a linear transformation of the uncorrected image.  This linear transformation can be viewed as a shift in 
the mean value for each band for each pixel.  Such a shift is similar to the transformation used to calculate the fixed 
effect estimator.  This similarity implies that the regression coefficients estimated by the fixed effect estimator are 
unaffected by atmospheric correction.  Under these conditions, the econometric technique may be able to identify 
the dates of change from a series of Landsat images without ‘correcting’ them for atmospheric effects.   
 
The econometric technique also may reduce the effort required to assemble the data that are needed for supervised 
classification.  The econometric technique is trained on the stable land-cover classes only.  For many applications, 
there are more change classes than stable classes.  In this study, there are seven stable classes and sixteen change 
classes.  Under these conditions, less effort is required to assemble the training data for the econometric 
methodology than more conventional change detection techniques that require training data for both stable and 
change classes. 
 



  

 

6 CONCLUSION 
 
Econometric techniques rarely are used to process satellite images because many of their underlying assumptions 
are not be consistent with the data collected by the sensor.  For this application, these inconsistencies appear to 
have relatively little effect on accuracy or bias relative a more traditional methodology.  Indeed, the time series 
technique may alleviate bias, which may be more important than accuracy when the data generated from remotely 
sensed images are used in statistical analyses that seek to identify the causes of change in land cover/use. 
Nonetheless, the econometric technique is not designed to replace existing techniques—it cannot be used to 
classify an image or a time series of images.  Rather, the time series technique is designed to identify the date of 
land-use change, or another form of land conversion, from a time series of images after another technique is used to 
identify pixels where land-use changes between the first and last image of the time series. 
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