Paper presented at the 22nd Asian Conference on Remote Sensing, 5 - 9 November 2001, Singapore.
Copyright (c) 2001 Centre for Remote Imaging, Sensing and Processing (CRISP), National University of Singa|
Singapore Institute of Surveyors and Valuers (SISV); Asian Association on Remote Sensing (AARS)

USING A BEOWULF CLUSTER FOR A REMOTE SENSING APPLICATION

Chao-Tung Yang
Department of Computer Science and Information Engineering
Tunghai University
181 Taichung-kang Road, Sec. 3
Taichung, 407, Taiwan
Tel: +886-4-23590121 ext. 3249
E-mail: ctyang@mail .thu.edu.tw

Chih-Li Chang, Chi-Chu Hung, and Frank Wu
National Space Program Office
8F, 9 Prosperity 1st Road, Science-based Industrial Park
Hsinchu, 300, Taiwan
Tel: +886-3-5784208 ext. 8461, Fax: +886-3-5799972
E-mail: CLChang@nspo.gov.tw

KEY WORDS: Beowulf, Cluster Computing, Parallel Processing, Remote Sensing, and Geometric Correction

ABSTRACT: To use remote sensing data has been growing. Supercomputers that are single big expensive
machines with a shared memory and one or more processors meet the professional need. However, many general
users process the data with PCs. They suffer slow output for the heavy burden of computation. A large-scae
processing and storage system that provides high bandwidth at low cost is then their expectation. A cluster is a
collection of independent and cheap machines, used together as a supercomputer to provide a solution. In this paper,
a cluster, called NSPO Parallel TestBed, was built. The system architecture and benchmark performances of the
cluster are presented. The parallel version of radiometric and geometric corrections was implemented and
experimented on the cluster. The results show that the cluster can speed up for the remote sensing application.

1. INTRODUCTION

Extraordinary technological improvements over the past few yearsin areas such as microprocessors, memory, buses,
networks, and software have made it possible to assemble groups of inexpensive personal computers and/or
workstations into a cost effective system that functionsin concert and posses tremendous processing power. Cluster
computing is not new, but in company with other technical capabilities, particularly in the area of networking, this
class of machinesis becoming a high-performance platform for parallel and distributed applications[1, 2, 8, 9].

Scalable computing clusters, ranging from a cluster of (homogeneous or heterogeneous) PCs or workstations to
SMP (Symmetric MultiProcessors), are rapidly becoming the standard platforms for high-performance and large-
scale computing. A cluster is a group of independent computer systems and thus forms a loosely coupled
multiprocessor system. A network is used to provide inter-processor communications. Applications that are
distributed across the processors of the cluster use either message passing or network shared memory for
communication. A cluster computing system is a compromise between a massively parallel processing system and a
distributed system. An MPP Massively Parallel Processors) system node typically cannot serve as a standalone
computer; a cluster node usually contains its own disk and equipped with a complete operating systems, and
therefore, it also can handle interactive jobs. In a distributed system, each node can function only as an individual
resource while a cluster system presentsitself as asingle system to the user.

The concept of Beowulf clusters originated at the Center of Excellence in Space Data and Information Sciences
(CESDIS), located at the NASA Goddard Space Flight Center in Maryland. The goal of building a Beowulf cluster
is to create a cost-effective parallel computing system from commodity components to satisfy specific
computational requirements for the earth and space sciences community. The first Beowulf cluster was built from
16 Intel DX4™ processors connected by a channel-bonded 10 Mbps Ethernet, and it ran the Linux operating system.

It was an instant success, demonstrating the concept of using a commodity cluster as an alternative choice for high-
performance computing (HPC). After the success of the first Beowulf cluster, several more were built by CESDIS
using several generations and families of processors and network.

Beowulf is a concept of clustering commodity computers to form a parallel, virtual supercomputer. It is easy to

build a unique Beowulf cluster from available components. Currently, RGS (ROCSAT Ground System) at NSPO
conducted and maintained an experimental Linux SMP cluster (SMP PC machines running the Linux operating
system), named NPTB (NSPO Parallel TestBed), which is served as a computing resource for testing. NPTB is
made up of 16 PC-based SMPs (eight dual-Celeron SMPs and eight dual-Plll SMPs). Nodes are connected using
Fast Ethernet with a maximum bandwidth of 100Mbits, through two 3Com 24-port switches. The NPTB is operated
as a unit system to share networking, file servers, and other peripherals. The system can provide a cost-effective
way to gain features and benefits (fast and reliable services) that have historically been found only on more
expensive proprietary shared memory systems. The typical architecture of a cluster is shown in Figure 1. The
shaded boxed and the bold lines show the configuration of NPTB cluster.

Applications ——————] Parallel Applications]

Middleware —] MPI/Pro |

oS

Protocol

Interconnect Fast Ethernet

=S

—— A%V
-/‘.
Cluster of PCs Cluster of SMPs | | Cluster of W/Ss

Nodes

Figure 1: Typical cluster architecture.

In this paper, the cluster NPTB was built. The system architecture and benchmark performances of the cluster are
presented. To meet the high performance requirements of remote sensing data processing for ROCSAT-2 [3], the
parallel version of radiometric and geometric corrections was implemented and experimented on the NPTB [5, 6, 7].

2. SYSTEM DESCRIPTIONS

Our SMP cluster is a low cost Beowulf-type class supercomputer that utilizes multi-computer architecture for
parallel computations. The NSPO Parallel Testbed consists of two PC clusters asshown in Figure 2. It consists of 16
PC-based symmetric multiprocessors (SMP) connected by two 24-port 100Mbps Ethernet SuperStackll 3300 XM

switches with Fast Ethernet interface. Its system architecture is shown in Figure 3. There are one server node and 15
computing nodes. The server node has two Intel Pentium-I111 945MHz (750 over-clock, FSB 126MHz) processors
and 768MBytes of shared local memory. Each Pentium-111 has 32K on-chip instruction and data caches (L1 cache),
a 256K on-chip four-way second-level cache with full speed of CPU. There are two kinds of computing nodes, one
is P-111-based, and the other is Celeron-based. Each P-I11-based computing node with two 945 P-I11 processors has
512MBytes of shared loca memory. Each Celeron-based computing node with two Celeron processors has

384MBytes of shared local memory. Each Celeron also has 32K on-chip instruction and data caches (L1 cache), a
128K on-chip four-way second-level cache with full speed of CPU. Each individual processor is rated at 495MHz,

and the system bus has a clock rate of 110 MHz.

fal From :.-.id-r g (b P side

Figure 2: The snapshot of NSPO Parallel Testbed.

duall8 duall7 duallé duall5 duall4 dualld duall2 duall /

smP || smp|[smp || smp | [smp || smp || smp |[SMP

(PVIII9751 (P-1975)| | (P-1975)| | -1 975)| | (P-111 945)|| (P-1ti 945)|| (P-111 945)} f;'?lfexg

Shared Memoryj|
512MB

ABIT VP6 I

| 2-node Storage
Device

Network
Device

| [SMP
30080495 300a oc 495 \ e T [T i
4 G

Uplink

b
1
\
1
!
\

Shared Memory]|
384MB

Storage | | Network
Device Device

Figure 3: The NSPO Parallel Testbed system architecture.

SMP || SMP || SMP || SMP | | SMP || SMP || SMP || SMP
(Celeron|| (Celeron|| (Celeron|| (Celeron| | (Celeror{ | (Celeron{| (Celeror{ | (Celero
495 495 495 495 495 495 495 495

Ve " dual dual3 dual4 duals dualé dual? duald dual9

ABIT BP6
2-node
SMP

Linux is a robust, free and reliable POSIX compliant operating system. Several companies have built businesses
from packaging Linux software into organized distributions; RedHat is an example of such a company. Linux
provides the features typically found in standard UNIX such as multi-user access, pre-emptive multi-tasking,
demand-paged virtual memory and SMP support. In addition to the Linux kernel, alarge amount of application and
system software and tools are also freely available. This makes Linux the preferred operating system for clusters.
The idea of the Linux cluster is to maximize the performance-to-cost ratio of computing by using low-cost
commodity components and free-source Linux and GNU software to assemble a parallel and distributed computing
system. Software support includes the standard Linux/GNU environment, including compilers, debuggers, editors,
and standard numerical libraries. Coordination and communication among the processing nodes is an key
requirement of parallel-processing clusters. In order to accommodate this coordination, developers have created
software to carry out the coordination and hardware to send and receive the coordinating messages. Messaging
architectures such as MPI or Message Passing Interface, and PVM or Parallel Virtual Machine, alow the
programmer to ensure that control and data messages take place as needed during operation.

PVM, or Parallel Virtual Machine, started out as a project at the Oak Ridge National Laboratory and was developed
further at the University of Tennessee. PVM is acomplete distributed computing system, allowing programs to span
several machines across a network. PVM utilizes a Message Passing model that allows developers to distribute
programs across a variety of machine architectures and across several data formats. PVM essentially collects the
network's workstations into a single virtual machine. PVM allows a network of heterogeneous computers to be used
as a single computational resource called the parallel virtual machine. As we have seen, PVM is a very flexible
parallel processing environment. It therefore supports almost all models of parallel programming, including the
commonly used all-peers and master-slave paradigms.

MPI is a message-passing application programmer interface with protocol and semantic specifications for how its
features must behave in any implementation (such as a message buffering and message delivery progress
requirement). MPI includes point-to-point message passing and collective (global) operations. These are all scoped
to a user-specified group of processes. MPI provides a substantial set of libraries for the writing, debugging, and
performance testing of distributed programs. Our system currently uses LAM/MPI, a portable implementation of the
MPI standard developed cooperatively by Notre Dame University. LAM (Local Area Multicomputer) is an MPI
programming environment and development system and includes a visualization tool that allows a user to examine
the state of the machine allocated to their job as well as provides a means of studying message flows between nodes.

3. SYSTEM PERFORMANCE
3.1 NASParallel Benchmark

The NAS Parallel Benchmark (NPB) is a set of 8 programs designed to help evaluate the performance of parallel
supercomputers. The benchmarks, which are derived from computational fluid dynamics (CFD) applications,

consist of five kernels and three pseudo-applications. NPB 2.3 is MPI-based source-code implementations written

and distributed by NAS. They are intended to run with little or no tuning, and approximate the performance a
typical user can expect to obtain for a portable parallel program. The LU benchmark is based on the NX reference
implementation from 1991. This code requires a power-of-two number of processors. A 2-D partitioning of the grid

onto processors occurs by halving the grid repeatedly in the first two dimensions, alternately x and then y, until all

power-of-two processors are assigned, resulting in vertical pencil-like grid partitions on the individual processors.
This ordering of point based operations constituting the SSOR procedure proceeds on diagonals which

progressively sweep from one corner on a given z plane to the opposite corner of the same z plane, thereupon

proceeding to the next z plane. Communication of partition boundary data occurs after completion of computation

on all diagonals that contact an adjacent partition. This constitutes a diagonal pipelining method and is called a
“wavefront” method. It resultsin relatively large number of small communications of 5 words each.

A NAS benchmark that we chose to present here is LU. For the LU benchmark, the sizes were class A and B. The
execution time of LU was shown in Figure 4. The performance numbers for 16 processors as reported in Figure 4 by
the LU benchmark were 715.06 MFLOPS and 778.62 MFLOPS for class A and class B, respectively. As a measure
of scalability, we selected parallel speedup, as classically calculated. The serial time was obtained by running the
benchmarks on one processor. The speedup of LU benchmark is reported in Figure 4.

o
s = I = Doz A F: i g ;
; _ o | [=Ceeron on Cmx o -] Alflops on Class A | 2
ik 5 @ CRlonom on Cass A L = Cawron on Cme 1 1 fn?f.',.ndf..uﬂ:’,’fn ¥
= Celoron an Tss B s i n T} o Betal Ao as Clasd 8 | 1
s “ . G0 || = MPOPSCRUan Cass B B
% e - =
'E 4000) = & ¥ z 2 = gm L
- 1] " ¥
3 sm g k. G i
8 By 4| 58 -
2000 # _ - 3| Al
il sl -F % 158 i
i 4 & 5 Gl ; P S 10
4 A 8.
i sl B 8 i :
- 5 = . Celron Celwon Ceieos Dewron Ceenon
1 3 it gE &
U ICRE 4CRE BOAE MORE ICAk CAls ACAE 16 FLE 4K AUEED ABER4 SBEKE 4USR16
Bl o sor Bl proca s §or ol pratedsal
o (k) 5]

Figure 4: (a) Execution time of LU. (b) Speedup of LU using 16 processors. (c) Total Mflops/s obtained using 16
processors.

3.2 High Performance Linpack (HPL) Benchmark

HPL is a software package that solves a (random) dense linear system in double precision (64 bits) arithmetic on
distributed-memory computers [4]. It can thus be regarded as a portable as well as freely available implementation
of the High Performance Computing Linpack Benchmark. The HPL software package requires the availability on
your system of an implementation of the Message Passing Interface MPI (1.1 compliant). An implementation of
either the Basic Linear Algebra Subprograms BLAS or the Vector Signal Image Processing Library VSIPL is aso
needed. Machine-specific as well as generic implementations of MPI, the BLASand VSIPL are available for alarge
variety of systems.

This software package solves a linear system of order n: Ax=b by first computing the LU factorization with row
partial pivoting of the n-by-n+1 coefficient matrix [A b]=[[L, U] y]. Since the lower triangular factor L is applied to
b as the factorization progresses, the solution x is obtained by solving the upper triangular system Ux=y. The lower
triangular matrix L is left unpivoted and the array of pivots is not returned. The data is distributed onto a two-
dimensional P-by-Q grid of processes according to the block-cyclic scheme to ensure “good” load balance as well
as the scalability of the algorithm. The n-by-n+1 coefficient matrix is first logically partitioned into NB-by-NB
blocks, which are cyclically “deat” onto the P-by-Q process grid. This is done in both dimensions of the matrix.
The right-looking variant has been chosen for the main loop of the LU factorization. This means that at each
iteration of the loop a panel of NB columns is factorized, and the trailing submatrix is updated. Note that this
computation isthus logically partitioned with the same block size NB that was used for the data distribution.

The HPL package provides atesting and timing program to quantify the accuracy of the obtained solution aswell as
the time it took to computeit. The best performance achievable by this software on your system depends on alarge
variety of factors. Nevertheless, with some restrictive assumptions on the interconnection network, the algorithm
described here and its attached implementation are scalable in the sense that their parallel efficiency is maintained
constant with respect to the per processor memory usage. In order to find out the best performance of your system,

the largest problem size fitting in memory is what you should aim for. The amount of memory used by HPL is
essentially the size of the coefficient matrix. For example, if you have 4 nodes with 256 MB of memory on each,
this corresponds to 1 GB total, i.e., 125M double precision (8 Bytes) elements. The square root of that number is
11585. One definitely needs to leave some memory for the OS as well as for other things, so a problem size of
10000 is likely to fit. As arule of thumb, 80% of the total amount of memory is a good guess. If the problem size
you pick istoo large, swapping will occur, and the performance will drop. If multiple processes are spawn on each
node (say you have 2 processors per node), what counts is the available amount of memory to each process. The
performance achieved by this software package on our Parallel Testbed is shown in Figure 5. We compare the
system performance of our cluster with P-111 550X 16 data that from the HPL web site. Our cluster can achieve
6.179Gflops/s for the problem size 20000X 20000 with channel bonding.

Figure 5: The system performance comparison of our cluster with HPL web site data.
4. PARALLEL RADIOMETRIC AND GEOMARTIC CORRECTION

The purpose of image rectification and restoration is to correct image for distortions or degradations that stem from
the image acquisition process in geometry and radiance. The measured radiance is influenced by factors, such as
changes in scene illumination, atmospheric conditions, viewing geometry, and detector response characteristics.
The sources of geometric distortions include perspective, earth curvature, earth rotation, orbit inclination,
atmospheric refraction, and relief displacement; aspect overlap, and variations in the altitude, attitude and velocity
of the sensor platform. The parallel version of radiometric and geometric correction was implemented by NCCU [5].
The call block diagram of parallel program is shown in Figure 6.

1]

Figure 6: The call block diagram of parallel radiometric and geometric correction.

The parallel version of geometric correction consists of atmospheric correction, sensor response characteristics
correction, aspect ration correction, earth rotation skew correction, image orientation to North-South, and correction
of panoramic effects [6, 7]. We use the Landsat-5 Level-0 image data as input file. To correct atmospheric effects,
the digital counts are converted to radiance. To correct sensor response characteristics, the different gains and
offsets are applied to each pixel. Because the Landsat multispectral scanner performs a 79mX56m equivalent

ground spacing of the 79mX79m equivalent pixels, the Landsat image is too wide for its height by a factor of
79/56=1.411. Consequently to produce a geometrically correct image either the vertical dimension has to be
expanded by this amount or the horizontal dimension must be compressed. To correct for the effect of earth rotation,
it is necessary to implement a shift of pixelsto the left that is dependent upon the particular line of pixels measured
with respect to the top of theimage. It is an inconvenience to have an image that is not oriented vertically in a north-
south direction. To correct orientation distortion, it will be recalled that the Landsat-5 orbits in particular are
inclined to the north-south line by about 9 degrees. To correct panoramic effects, the far pixels should be
compressed. Finally, ground controlled points for geo-coding are applied for precise correction. The experiment was
conducted on three P-111 550MHz with 128MB memory respectively and connected with 100Mbps Fast-Ethernet
LAN. The resolution of input image data is 3600X2944 and size is about 10.11MB. The source and results were
shown in Figure 7. The execution time of sequential program is 84.65 sec, and the execution time of parallel
program with the same correction functions is 33.3 sec by using three processors. The experimental results show
that a three-CPU cluster can achieve 2.54 speedup for the remote sensing data processing.

{a) Source (b} Result

Figure 7: The image data before and after processing.
5. CONCLUSIONS

The Image Processing System (IPS) will provide real-time receiving from X-Band Antenna System (XAS). The off-
line processes include the full capabilities for archiving, cataloging, user query, and processing of the remote
sensing image data for ROCSAT-2. The XAS receives the high-rate link of the earth remote sensing data from
ROCSAT-2 satellite and has the capability of receiving downlink data rate up to 320Mbps. The ROCSAT-2 satellite
will provide the most space images with daily revisit for civil applicationsin Taiwan. What isemergent need for the
general user is alarge-scale processing and storage system that provides high bandwidth at low cost. In this paper,
we presented the system architecture and benchmark performance of the NPTB Beowulf cluster. The parallel
version of radiometric and geometric corrections were implemented and experimented on the cluster. The
experimental results show that the cluster speeds up for the remote sensing application.

REFERENCES

[1] Buyya, R., 1999a. High Performance Cluster Computing: System and Architectures, Vol. 1, Prentice Hall PTR, NJ.

[2] Buyya, R., 1999b. High Performance Cluster Computing: Programming and Applications, Vol. 2, Prentice Hall PTR, NJ.

[3] Chang, C. L., 2000. Preliminary Design Concepts of Geometric Correction for ROCSAT-2 Remote Sensing Data
Preprocessing, Proceedings of 19" Taiwan Surveying Research and Application Conference, Chunghwa City, pp. 589-598.

[4] http://www.netlib.org/benchmark/hpl, HPL — A Portable Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers.

[5] Lie, W. N., 2001. Distributed Computing Systems for Satellite Image Processing, Technical Report, EE, National Chung
Cheng University.

[6] Lillesand, Thomas M. and Kiefer, Ralph W., 1994. Remote Sensing and Image I nterpretation, Third Edition, John Wiley &
Sons.

[7] Richards, John A., 1999. Remote Sensing Digital Image Analysis: An Introduction, Springer-Verlag.

[8] Sterling, T. L., Salmon, J., Backer, D. J.,, and Savarese, D. F., 1999. How to Build a Beowulf: A Guide to the
Implementation and Application of PC Clusters, 2nd Printing, MIT Press, Cambridge, M assachusetts, USA.

[9] Wilkinson, B. and Allen, M., 1999. Parallel Programming: Techniques and Applications Using Networked Workstations
and Parallel Computers, Prentice Hall PTR, NJ.

	acrs: Paper presented at the 22nd Asian Conference on Remote Sensing, 5 - 9 November 2001, Singapore.
Copyright (c) 2001 Centre for Remote Imaging, Sensing and Processing (CRISP), National University of Singapore;
Singapore Institute of Surveyors and Valuers (SISV); Asian Association on Remote Sensing (AARS)
__

