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ABSTRACT 
This study intends to investigate the use of NASA/JPL POLSAR data (multilook C- and L-bands) for classifying 
land cover features, such as vegetation (i.e. grass, rice paddy, rubber), natural feature (i.e. river), and man-made 
features (i.e. canal, highway, runway, built-up area).  Covering the area of Jitra, the 10 meters resolution air-borne 
POLSAR data acquired on 3 December 1996 was used in this study.  Prior to the classification, the complex 
covariance matrix based Lee and Mean polarimetric filters were separately applied for evaluating their speckle 
suppression performance.  In unsupervised classification, the scattering behavior of each pixel in Lee filtered 
images was analyzed, based on a multi-pixel algorithm and the phase difference.  The supervised Wishart classifier 
was then used to reclassify the pixels of different scattering categories into the corresponding land cover classes.  
The Kappa statistics computed for both C- and L-band classified images were 0.73 and 0.76, respectively. 
 
1. INTRODUCTION 
 
Spaceborne remote sensing has long been an appropriate and effective data source for land cover mapping due to 
the wide coverage and repetitive observations (Haack and English, 1996).  In general, there exist two major types of 
remotely sensed data: optical and synthetic aperture radar (SAR).  Both optical and SAR data, however, have 
certain problems in their applications in mapping the tropical regions.  The occurrence of extensive clouds is the 
main problem of the optical remote sensing data.  As clouds interfere with the reception of optical sensors, its 
presence consequently causes the loss of land cover information in the captured data.  At present, only single-
frequency, single-polarization SAR is available on space-platforms. Land cover features cannot be significantly 
separated based on their single-band backscattering signature alone. Land cover classification using single-
frequency single-polarization SAR data, hence, is not very successful.  Nevertheless, with the advent of 
multifrequency and multipolarization SAR systems, the data captured has successfully attracted a great deal of 
attention in various applications (Boerner et. al, 1998).  An attempt is made, in this study, to investigate and 
optimize the use of multifrequency and multipolarization SAR data for land cover classification over the tropical 
region.  The main focus is placed on the C- and L-band NASA/JPL POLSAR data acquired during the Pacific Rim 
AIRSAR Campaign in 1996. 
 
Sections 2 and 3 of this paper present the test area selected and the data acquired for this study.  In Section 4, the 
speckle suppression and classification of POLSAR data are discussed.  Section 5 analyzes the results obtained.  
Concluding remarks and recommendations are given in Section 6.   
 
2. STUDY AREA 
 
The test site identified for this study is an agricultural inland region covering an area of approximately 100 km2 in 
the northwest of Peninsular Malaysia near Jitra (Figure 1a).  It extends from 6° 11’ to 6° 17’ N latitude and 100° 
21’ to 100° 26’ E longitude. The topography is characterized by flat and undulating terrain.  The large portions of 
the site are the irrigated land, predominantly cultivated rice paddy.  During the 1996 AIRSAR PacRim Deployment, 
the site was selected by the Malaysian Centre for Remote Sensing (MACRES) for land use and rice crop study (Lou 
et. al, 1997). 
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Figure 1: Location map of Jitra, Kedah (a) and the corresponding Lee polarimetric filtered (5××××5) POLSAR 
data (b) as well as the multispectral SPOT-2 data (c) 

 
3. DATA ACQUISITION 
 
The data used in this study was provided by NASA/JPL. The POLSAR data, with C- (5.7 cm), L- (25 cm) and P- 
(68 cm) bands in full polarization (HH, HV, and VV), was acquired on 3 December 1996 using the AIRSAR 
instrument on-board a DC-8 aircraft.  The aircraft flew at nearly 9 km altitude during data collection. The incidence 
angles were 24° for near range and 60° for far range corresponding to the near and far ranges of 10 and 20 km 
respectively.  The 18-look POLSAR data supplied by NASA/JPL was projected into ground range with a ground 
pixel spacing of 10 meters.  Only C- and L-bands (both in Compressed Stokes Matrix format) were examined in 
this study.  A cloud-free SPOT-2 scene of the same area was also acquired and processed by CRISP, Singapore 
(Figure 1c).  The 20-m resolution SPOT multispectral image was acquired on 1 January 1997 and processed to 
Level 2A.  It was used together with the existing topographical and land use maps for locating the test sites. 
 
4. METHODS AND IMPLEMENTATION 
 
4.1 Speckle Suppression Using Polarimetric Filters 
 
The POLSAR images (in complex covariance matrix form) were filtered using two polarimetric filters, namely Lee 
(Lee et. al, 1999b) and Mean (also known as “boxcar”) filters.  Window sizes of 3×3, 5×5, 7×7, were tested and 
analyzed.  The performance of each polarimetric filter was assessed based on the criteria of Sheng and Xia (1996), 
i.e. speckle suppression index, SSI and edge enhancing index, EEI.  The best filter should be capable of retaining 
linear land cover features (with higher EEI obtained) and homogenizing polygonal land cover features (with lower 
SSI obtained).  Apart from the performance indicators, the absolute intensity difference of polarization signatures 
(extracted from the original and filtered images) was also computed to examine the filter’s strength in preserving 
polarization properties.  The smaller the intensity difference, the better the performance of the filter.  Comparing 
both Lee and Mean filters (Figures 2 – 4), the former was found to be superior to the latter.  Hence, the Lee filtered 
images of both C- and L-bands using 5×5 window were selected and employed in the subsequent classification 
process. 
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Figure 2: One-dimensional intensity plot of road segment extracted from the L (a) and C (b) span images 
[span = |HH|2 + 2|HV|2 + |VV|2] 



 

 
 SSI = 0.357                SSI = 0.319 

                                     (a) Original (b) Lee 5××××5           (c) Mean 5××××5 

 
 SSI = 0.382                SSI = 0.309 

                                     (d) Original (e) Lee 5××××5           (f) Mean 5××××5 

Figure 3: Three-dimensional intensity plot of rubber extracted from the C (a,b,c) and L (d,e,f) span images 
 
 

    
 Total intensity difference = 6.868 Total intensity difference = 8.268 

(a) Original (b) Lee 5××××5 (c) Mean 5××××5 

      
 Total intensity difference = 4.791 Total intensity difference = 5.999 

(d) Original (e) Lee 5××××5 (f) Mean 5××××5 

Figure 4: Polarization signature of paddy extracted from the L (a,b,c) and C (d,e,f) band data 
 
 
4.2 Unsupervised Classification of Scattering Mechanisms 
 
There are two different approaches of unsupervised classification carried out in this study.  First, the multi-pixel 
classification algorithm proposed by Qong et. al (2000) – an improved version of van Zyl approach (1989) – was 
used to classify the Lee filtered image pixels into three categories: (1) odd number of reflections, (2) even number 
of reflections, and (3) diffuse scattering.  To define the scattering behavior of each pixel, the classification involved 
the use of the elements of Muller matrix. Detailed discussions on the Muller matrix appear in van Zyl (1989) and 
Qong et. al (2000).  Figures 5a and 5b show the classification outcomes of C- and L-bands where the odd-bounce, 
double-bounce, and diffuse scattering are colored in red, green, and blue respectively. 
 
The phase difference between HH and VV polarization (φHHVV) was also studied and employed to group all pixels 
into (1) surface class where |φHHVV|<60°, (2) |φHHVV|>120° for double-bounce class, and (3) unknown class (Lee et. 
al, 2001).  Figures 5c and 5d give the C- and L-band classification outputs in which the surface, double-bounce, and 
unknown classes are presented in red, green, and white colors, respectively. 
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Figure 5: Unsupervised and supervised classification results of C- (a,c,e) and L- (b,d,f) band data. See text 
(Sections 4.2 and 4.3) for legends. 

 
4.3 Supervised Classification Based on Complex Wishart Distribution 
 
In supervised classification, the image pixels of different scattering classes, derived from the multi-pixel algorithm, 
were reclassified accordingly to the corresponding land cover categories by using the Bayesian Maximum 
Likelihood classifier (Lee et. al, 1999a; 1994).  The complex coherency matrix T (a Hermitian matrix) of candidate 
pixel P, which is based on Pauli matrix representation, was used to compute its distance to each target class m.  The 
distance measure is defined by 
 

d(T,Vm) = In|Vm| + Tr(Vm-1T)        (1) 
 
where Vm is the mean coherency matrix for target class m.  The pixel P is assigned to the target class with the 
minimum distance measured.  Figures 5e and 5f present the classification results of C- and L-band images [paddy 
(red), rubber (green), built-up area (yellow), grassland (magenta), runway (brown), water (blue)] 
 



 
5. RESULTS AND DISCUSSION 
 
As can be seen in Figure 5b, the paddy and built-up area in L-band data were categorized by the multi-pixel 
algorithm into the even-bounce class whilst the rubber was dominated by diffuse scattering.  The canal, grassland, 
highway, river, and runway which exhibit specular scattering fell into the odd-bounce class.  For the classification 
based on φHHVV, the L-band classified result was identical to that of using the multi-pixel algorithm, except for the 
rubber class.  The rubber was classified into the surface class.  For the C-band data, all land cover features, 
excluding built-up area, were characterized by the multi-pixel algorithm and phase difference as having the odd-
bounce scattering behavior.  Table 1 presents the scattering mechanisms of land cover classes of both C- and L-
band data.  In this study, it was found that the multi-pixel algorithm yielded more satisfying and detailed results 
than that based purely on the phase difference.  The total unclassified pixels in the phase difference based classified 
images were 23% and 29% for the C- and L-bands, respectively. 
 

Table 1: Scattering mechanisms (in percent) of each land cover class 
Land cover Band Scattering classes based on multi-pixel algorithm Scattering classes based on phase difference 
  Odd-bounce Even-bounce Diffuse scattering Surface Double-bounce Unknown 
Grassland C 93.93 - 6.07 97.66 1.06 1.28 
 L 100 - - 98.54 - 1.46 
Paddy C 78.81 15.99 5.20 55.21 10.78 34.01 
 L 3.79 94.57 1.64 - 80.99 19.01 
Rubber C 98.86 - 1.14 98.44 - 1.56 
 L 5.43 10.66 83.91 48.89 23.70 27.41 
River C 97.43 - 2.57 100 - - 
 L 40.94 5.89 53.17 97.65 - 2.35 
Canal C 85.09 4.13 10.78 95.66 - 4.34 
 L 98.56 - 1.44 97.21 - 2.79 
Highway C 98.72 - 1.28 100 - - 
 L 98.93 - 1.07 99.31 - 0.69 
Runway C 96.67 - 3.33 100 - - 
 L 100 - - 99.23 - 0.77 
Built-up area C 40.40 43.15 16.45 42.43 46.90 10.67 
 L 18.05 70.93 11.01 19.03 59.93 21.04 
 
For the C- and L-band supervised classified images, the overall accuracy and Kappa statistics (Arora and Ghosh, 
1998) were computed and are tabulated in Table 2.  The classification results obtained were promising where the 
correct classification of land cover classes was more than 70% for both C- and L-bands. With the longer 
wavelength, the L-band data shows more distinct discrimination between land cover classes and thus gives the 
better classification performance compared to the C-band.  From Figures 5e and 5f, it was clearly observed that the 
highway was misclassified into the waterbody class due to their poor separation.  Table 3 gives the separation of the 
land cover classes computed based on Lee et. al (1999a). The separation measure was computed as 

 

Rij = 
ij

jjii

D
DD +

          (2) 

 
where Dii and Djj represent the dispersion within class, Dij denotes the distance between classes i and j.  The large 
measured value of Rij indicates the poor separability of the two classes.  
 
6. CONCLUSIONS AND RECOMMENDATION 
 
The C- and L-band POLSAR data have proven to be useful in land cover classification, especially for paddy class.  
An overall accuracy of 80% was shown by the L-band whilst the accuracy achieved by C-band was 78%.  For 
future study, it is recommended that the classification of POLSAR data can include some additional information, 
such as texture statistics (Mancini and Griffths, 1992), polarimetric discriminators (Touzi et. al, 1992), and 
decomposition elements (Cloude and Pottier, 1997) in order to improve the accuracy. 
 

Table 2: Classification accuracy computed from C- and L-band POLSAR images 
 Percent of correct classified into 
 Paddy Rubber Built-up area Grassland Runway Waterbody* 

Overall 
accuracy 

Kappa 
statistics 

C-band 80.78 83.59 73.44 79.18 75.00 70.82 78.18 0.7315 
L-band 87.65 80.12 85.83 72.55 74.03 71.09 80.74 0.7552 
*Canals and river are categorized as waterbody 
 



Table 3: Separation measured between highway, canal, river, and runway in C- and L-band data 
 Highway versus canal Highway versus river Highway versus runway 
C-band 3.395 2.840 -3.601 
L-band 2.968 2.885 -5.168 
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