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ABSTRACT:  Most Artificial neural networks (ANN) models  used in the remote sensing classification  are based on 

the multilayer perceptron (MLP) with back-propagation (BP) training algorithm. Compared to conventional 

statistical classifiers, MLP classifiers are non-parametric and distribution-free and is thus less restrictive in 

approximation, especially when distributions of features are strongly non-Gaussian. However, the major 

shortcomings of this class of networks are that they take relatively longer time to train and are prone to convergence to 

local minimum. The radial basis function (RBF) network, which combines the characteristics of the parametric 

statistical distribution model and non-parametric single layer perceptron, train much faster and are more stable than 

BP while keeping similarly complicated proximity. ANN, however, are very efficient in performing in classification 

tasks with low level of intelligence. They are less capable of reasoning with deep level knowledge, which is generally 

symbolic in nature. To better approximate the reality, integration of ANN with symbolic geographical knowledge is 

thus essential in the remote sensing classification. A knowledge-integrated RBF model that combines the power of 

approximation in high-dimensional space of the RBF network and the logic reasoning of rule-based inference is 

proposed in the present study. In addition to conceptual and technical discussions of the model, our arguments are 

substantiated by a real-life application. The experimental results show that the proposed model is more accurate, 

faster in training, simple in structure, and more interpretable.  

 

1. INTRODUCTION 

 

Thematic mapping by the classification of satellite data via pattern recognition has been one of the most 

important methods in remote sensing. Artificial neural networks (ANN) have been extensively applied to perform 

information extraction and classification of remotely sensed data (Atkinson and Tatnall 1997). Compared to the 

symbolic systems, as a massive parallelly distributed architecture with a large number of units and connections, ANN 

can simulate the basic functions of human neural system, and it is especially suitable for the simulation of human 

vision. A great variety of ANN models have been proposed in the past several decades. The multilayer perceptron 

(MLP) with back-propagation (BP) algorithm might be one of the most widely used models for information 

extraction and classification. Compared to the conventional statistical classifiers, the BPNN is distribution-free and 

non-parametric, and is more robust, especially when the distributions of features are strongly non-Gaussian. However, 

BPNN exhibits some serious drawbacks such as slow convergence in learning phase, the potential convergence to 

local minimum, the common chaotic behavior, and the inability to detect over-fitting.  

Radial basis function (RBF) network (Powell 1987), on other hand, is another type of multilayer network which 

is very different from BPNN in its training algorithm. In RBF network, the output units form a linear combination of 

the basis functions in the kernel layer, and the basis functions produce a localized response to the input. The basis 

function can be viewed as an activation function in the kernel layer in which each unit has a localized receptive field 

to the input vector. RBF networks can overcome some of the above limitations of BPNN by relying on a rapid training 

phase, avoiding chaotic behavior, having simpler architecture while keeping complicated mapping capability. Such 

characteristics and the intrinsic simplicity of the RBF networks make them an interesting alternative to pattern 



 

recognition in general (Bishop 1995, Bruzzone 1999).  

         One of the problems  of the neural computation models is that they could only simulate low level cognitive 

functions of human vision and neural system resulting in an understanding of images with a very coarse degree 

(Medsker 1994). They are not effective in reasoning with deep knowledge that is generally represented in a symbolic 

way. In addition to spectral information, recognition and classification of remotely sensed images usually require 

domain specific knowledge such as DEM and its derivatives. To achieve more accurate classifications, neural 

networks and symbolic knowledge should be integrated into a single system (Foody 1995, Gong 1996, Peddle 1995, 

Murai and Omatu1997). Integrating geographical knowledge built on top of geographical information systems has 

become an approach to increase the accuracy and effectiveness in the classification of remotely sensed images. Such 

knowledge can be used to fine tune neural network classification based on spectral information. 

In this paper, a knowledge-integrated RBF model for the remote sensing classification is proposed. The 

integrated model employs a RBF network to classify images with spectral information. Geographical knowledge 

represented as rules is parallelly used to classify the images with topographical information. Classification results 

obtained from both methods are then combined by some evidence combination methods to derive the ultimate 

classification of the images. The approach thus takes advantages of the best of both worlds. In section II, we first 

describe the overall architecture of the RBF model. In section III, the effectiveness of the RBF model is evaluated by 

an application. The paper is then concluded with a summary and outlook in section IV.  

 

2. THE KNOWLEDGE-INTEGRATED RBF MODEL 

 

2.1 The architecture of the knowledge-integrated RBF model 

       There are four major components in the knowledge-integrated RBF model for the remote sensing classification 

(Figure 1): (A) Data source, (B) RBF network, (C) rule -based inference, (D) evidence combination. The first 

component is data source management that processes and prepares remote sensing data for the neural-network 

classification and geographical information (from GIS) for the rule -based inference. The neural-network component 

is essentially a RBF network that performs land-cover classification by hyper surface reconstruction in high 

dimensional space. Embedded in the RBF network is the ART network which facilitates the learning phase by 

performing efficient clustering in the kernel layer of the RBF network. Parallel to the neural-network component is 

the rule-based inference engine which classifies land covers by topographical knowledge built on top of geographical 

information system. Classification results of the RBF network and the rule-based inference are integrated within the 

evidence-combination component to produce the final classification of land covers.  
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Figure 1. The general architecture of the knowledge-integrated model 

(A) Data source; (B) RBF Network; (C) Rule-Based Inference (D) Evidence Combination 
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2.2 The RBF Network 

        RBF networks can be regarded as a special MLP structure in which the parametric statistical distribution model 

and non-parametric linear perceptron algorithm are combined together in serial sequence. The basic structure of a 

RBF network consists of an input layer (I), a kernel (hidden) layer (K), and an output layer (O). In the context of a 

ANN, the units in the kernel layer provide a set of kernel basis functions (called radial basis functions) that constitute 

the “basis” for the input vectors when they are expanded into the kernel unit space. The basis functions can be viewed 

as the activation functions in the kernel layer. The output of the RBF network is a linear combination of the radial 

basis (kernel) functions computed by the kernel units. Each kernel unit has a localized receptive field. The basis 

functions of the kernel layer are provided with the clustering centers which have statistical significance. Basis 

function can be chosen with respect to practical needs, the most widely used basis function is the simple Gaussian 

function in which the activation (Oi) of kernel unit i is calculated by the following formula:  
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where x  is the input vector, µj is the vector determining the center of the basis function associated with kernel unit j, 

and s 2 is the normalization factor. The output value in the kernel unit lies between 0 and 1. The closer is an input to 

the center of the Gaussian function, the larger the response of the unit becomes. The normalization factors 2 

represents a measure of the spread of the data around the cluster center associated with the kernel unit. It is usually 

determined by the average distance between the cluster center and each training instance (point) around the center. 

The activation level Oj of unit j in the output layer is determined by the linear combination:  
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where wji is the weight from kernel unit i to output unit j. In the output layer, the value of an unit is obtained through 

a linear combination of the nonlinear outputs from the kernel layer.  

        Therefore, RBF networks can be regarded as a bottom up approach to data classification by treating the design of 

a ANN as an approximation (curve-fitting) problem in high-dimensional space. For the problem of classification, 

RBF networks can determine how closely a given input is to the center of a kernel by the response of the 

corresponding kernel unit. If only a single kernel unit is employed, the decision region is simply circular. From this 

perspective, the RBF network is suitable for implementing an efficient classification model. Using a set of nonlinear 

basis functions, a RBF network is capable of approximating very arbitrary mapping relationship.  

In addition, RBF networks can overcome the problems of slow training speed and convergence to local 

minimum. Leaning in RBF networks is essentially the search of a surface that provides the best fit (in some statistical 

sense) to the training data in multidimensional space. The learning process of the RBF network can be divided into 

two stages: learning in the kernel layer followed by learning in the output layer.  Typically, the process of learning in 

the kernel layer is to determine the status of the units in the kernel layer, and it is usually performed by unsupervised 

clustering method. The supervised methods like Least Mean Square (LMS) algorithm are used for learning from the 

kernel layer to the output layer.  Generally, K-means is employed as t he clustering algorithm to determine the status of 

units in the kernel layer (Rolloet et al. 1998). Although k-means is a rapid and simple method for cluster partitioning 

in the feature space, it is difficult to determine the cluster centers with suitable scale. Therefore, other flexibly 

clustering algorithms have been demonstrated be able to overcome the aforementioned shortcomings and might 

perform better in determining the status of units in the kernel layer of a RBF network. In this  study, the adaptive 

resonance theory (ART) is employed for the clustering process (Grossberg 1976), and it is essentially a cluster 

discovery model useful for pattern recognition and classification (Carpenter and Grossberg 1988). The ART provides 

a solution to the stability-plasticity dilemma during the design process of learning systems, and it has two useful 

properties: real-time learning and self-organization. It has been demonstrated that ART is more sensitive to data noise 

than other conventional clustering methods such as the K-means algorithm and ISODATA.  



 

2.3 The Rule-based inference and evidence combination 

 

        Neural computation model is a simulation of human vision with low level of intelligence. An intelligent pattern 

recognition system should be able to proces s higher level of knowledge which is often symbolic in nature. A suitable 

integration of both will enhance the simulation of image understanding with remotely sensed data. Integration of 

ancillary data or knowledge in image classification has been shown to be effective in enhancing discrimination and 

classification accuracy (Eiumnoh and Shrestha 2000). In the present RBF classification model, geographical data or 

knowledge serves as ancillary information to improve the classification. Terrain features and their derived elements, 

such as slope and aspect, are integrated with spectral information to determine the final pattern of distribution. There 

are several ways in which geographical data and expert knowledge can be captured and represented by a 

knowledge-based analysis system . In this study, we use the simplest and perhaps the most common approach to 

symbolic knowledge representation, namely the production rules, to take into account the geographical knowledge of 

land covers. The captured rules are mostly fuzzy in meaning and uncertain in belief, i.e., consisting of two major 

types of uncertainty, imprecision and randomness in knowledge representation and inference. The uncertainty of rule 

is represented by a notion of probability taking the following format: 

IF( condition), THEN( conclusion), PF( Probability Factor)  

 where PF  reflects the degree of uncertainty, and PF  ?  [0, 1]. When PF is equal to 0, the rule is absolutely incredible. 

When PF is equal to 1, the conclusion of the rule is absolutely credible. When 0<PF<1, the conclusion is credible to a 

certain degree. To allow for imprecision in probabilistic statement, linguistic hedges can be used to modify PF.  

If we treat the classification results obtained from both the RBF network and the rule-based inference as 

evidence leading to the final classification of land covers, then we need some methods of evidence combination to 

integrate the initial results to derive the final classification result. Among different methods for evidence combination, 

the Dempster-Shafer theory is adopted in this study. According to the Dempster-Shafer (D-S) theory of evidence 

combination, the final vector of probability (p3) can be determined by the technique of orthogonal summation 

(denoted by ? ) of p1 (Vector of probability obtained from the RBF network) and p2 (Vector of probability obtained 

from the rule-based inference) as follows: 
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where G is a subset which represents the category, f  is the empty set, and p3(G)  is the partial PF attributed to G from 

the final PF.  

 

3. AN APPLICATION 

 

3.1 The study area and data used 

 

As an evaluation, the RBF model was applied to classify land 

covers from TM image. In this application, experiments were 

conducted using TM image with 6 non-thermal bands (1-7). The 

study area covers the Yuenlong region, northwest of Hong Kong 

(Figure 2). The size of the sub image cut out from the whole image 

is 600 rows by 600 columns, covering about 3200km2. According to 

the survey of the study area and with the vision interpretation of the 

corresponding data, there are 12 main types of land covers: 

C1—Sea; C2—Beach; C3—Inland Water; C4—Wet Land; 

 

Figure 2. The TM Image of the study area 



 

C5—Mangrove; C6—Urban; C7—Concrete Land; C8—Baren Land; C9—Green Land;  10—Forest; C11—Hill 

Grass; C12—Rock Grass 
where water (C1,C3), building area (C6,C7), vegetation area (C9,C10,C11), water (C1,C3) and shadow of building 
(C6, C7) can not be easily separated because of their closeness in spectral characteristics. The knowledge-integrated 
RBF model is thus used for the task. 
 
3.2 Results and Discussion 

 

The 4 dimensional input vector for the RBF network is A = (PCA1, CH4, CH5, CH7), where PCA1 is the 

principle component of PCA transformation of visible bands (CH1-Blue, CH2-Green, CH3-Red) for dimension 

reduction. A total of 1700 training samples were selected through visual interpretation of the scenes by comparing 

with a land-use map. In the training phase, the data sets include 1700 training sample data and 800 test sample data. 
Firstly, the RBF network with a kernel layer size of 120 and learning rate? of 0.01, was trained by the training 

sample data. The test error matrix was then obtained. The training time of the RBF network was about 50 seconds, 
and the overall accuracy is 90.17%. Meanwhile, the maximum likelihood classifier (MLC) and BPNN were also 
applied to the same data sets. The obtained structure of the BPNN is of three layers with 4 input nodes, 24 hidden 
nodes and 12 output nodes. The overall accuracy of the MLC is 85.25%, and that of BPNN is 89.92%. However, the 
learning time of the BPNN is about 1200 seconds after about 6,500,00 iterations. Comparing the three classifiers, we 
reach the following conclusions: 

 (i) Training time of the RBF network is less than that of the BPNN and the former attains higher accuracy of 
classification. (ii)ANN classifiers are distribution-free, and have more capability to separate the categories of mixture 
distribution in the feature space than conventional parametric statistical classifiers. Therefore, the RBF network 
yields the most effective classification both in the learning phase and the test phase. 

To select the reasonable number of units in the kernel layer of the RBF network is a key to the success of the 

classification. In this study, different numbers of units in the kernel layer, including 30, 40, 50, 60, 90, 125, 160, 200, 

and 250, are respectively selected. In other words, the patterns in the feature space are partitioned into different areas 

by the clustering method. The results indicate that the overall accuracy can be improved by increasing the size of the 

kernel layer, but the computation overhead also increases. However, when size of the kernel layer increases to a 

certain magnitude, the overall accuracy levels off. 

Better classification can be achieved if suitable geographical 

knowledge can be integrated into the RBF model. As an evaluation, 

knowledge established in terms of DEM and slope is used. For 

examples, it is impossible to have sea water distributed in places with 

DEM being higher than 0; hill grass area generally distributes on hill 

tops with DEM higher than 100m; the green forest land , such as urban 

park, should only distribute on mild plains around urban areas; and etc. 

The knowledge described above is represented as rules and was 

employed to classify land covers in the study area by the 

knowledge-integrated RBF model.  

  The same test samples were used to assess the overall accuracy 

of the knowledge-integrated RBF classification model. The results of 

the test indicate that the overall accuracy of the knowledge-integrated 

RBF model evidently increases to 93.17% in comparison with the 

90.17% achieved by the RBF network. Furthermore, the results obtained by the knowledge-integrated RBF model are 

visually more nature, especially the distribution of land covers such as wetland, rock-grass and inland water. It should 

be noted that we had only used very few coarse domain specific knowledge in the integrated model. Better 

performance is expected if finer knowledge could be integrated into the classification process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Land cover map obtained by the 

knowledge-integrated RBF model. 



 

4. CONCLUSIONS 

 

We have proposed in this study a knowledge-integrated RBF model for remote sensing classification. The 

integrated model takes advantage of the efficient classification by the RBF network and the geographical 

knowledge-based classification by the rule-based inference. It also provide a means to combine results obtained from 

neural networks with low level of intelligence similar to human vision and results derived from inference with 

geographical knowledge similar to human thought process via techniques of evidence combination. The effectiveness 

of such an integration has been demonstrated by the experiment. It is evident in the experiment that classification 

accuracy can be enhanced even though very coarse geographical knowledge derived from DEM and its derivatives is 

integrated with the RBF network. To further improve knowledge-integrated neural network model in general and the 

integrated RBF model in particular, it is essential to study the structures of various neural network models and the 

schemes of various knowledge representations so that a suitable integration can be derived.  
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