
NEURAL NETWORK MODELING OF LAKE SURFACE CHLOROPHYLL AND
SEDIMENT CONTENT FROM LANDSAT TM IMAGERY

Pranab J. BARUAH
Doctoral Program in Engineering, University of Tsukuba, 305 8573, Tel: +81-298-502589

Fax: +81-298-502920, E-mail: p.j.baruah@nies.go.jp, JAPAN

Masayuki TAMURA
Deputy Director, Social and Environmental Systems Division

National Institute for Environmental Studies, 16-2 Onogawa, 305 0053
Tel : +81-298-502479, Fax: +81-298-502572, E-mail: m-tamura@nies.go.jp, JAPAN

Kazuo OKI
Associate Professor, Graduate School of Agriculture and Life Science, The University of Tokyo

Yayoi 1-1-1, Bunkyo-ku, Tokyo 113 8657 Japan, Tel: +81-3-5841-8101
E-mail: agrioki@mail.ecc.u-tokyo.ac.jp, JAPAN

Hitoshi NISHIMURA
Professor, Institute of Engineering Mechanics and Systems, University of Tsukuba, 3058573 Japan,

Tel/Fax:+81-298-535254, E-mail: nishimura@surface.kz.tsukuba.ac.jp, JAPAN

KEYWORDS:  Inland water quality, Chlorophyll-a, Suspended Sediment, Transfer Function, Neural Networks.

ABSTRACT: Concentrations of chlorophyll and suspended sediment are two important optically active parameters
of inland water quality. In the open ocean, these two parameters can be effectively quantified by empirical
algorithms relating remote sensor radiances to surface concentrations. In inland waters, however, the task becomes
difficult due to the presence of suspended sediment and dissolved organic matters in high concentrations, often
varying independently of each other and overwhelming the signature of chlorophyll. Thus, the transfer function
becomes non-linear in nature. Moreover, broad band sensors have to be used in inland waters as the present aquatic
satellite sensors lack adequate spatial resolution for monitoring in these waters. In the process, conventional
algorithms fail to estimate the water quality parameters effectively. Neural networks has been regarded as a
relatively simpler tool to implement with proven success in modeling various nonlinear geophysical transfer
functions. In this study, back-propagation neural network is used to model the transfer function between chlorophyll
concentration and suspended solid, and sensor-received radiances at the first four bands of LandsatTM. Study area
is lake Kasumigaura of Japan, a shallow eutrophic lake with heavy sedimentation. Neural network with only one
hidden layer could model both the water quality parameters better than conventional regression techniques from
LandsatTM imagery. Root Mean Square Errors(RMSE) in estimating chlorophyll-a were 1.53µg/l(R2: 0.93) and
4.39µg/l(R2: 0.31) for neural networks and regression respectively. In estimating suspended sediments, RMSE for
regression was 1.47mg/l(R2:0.92) while for neural network the same was 2.14mg/l(R2:0.85). Neural network-
derived map of chlorophyll-a shows that, the lake is eutrophic even in the low productivity season.

1. INTRODUCTION

Remote sensing of inland water quality has involved mainly estimation of
surface chlorophyll and suspended sediment concentrations from sensor-
derived radiances. This is because of the fact that, these two parameters are
optically active and can adequately represent the inland water quality
scenario. Chlorophyll-a(Chl.a) is used as the primary pigment-index for
various phytoplanktons in water and is needed for estimating primary
productivity, biomass etc. Suspended Sediments(SS) are the most common
type of pollutants both in terms of weight and volume in the surface of
inland water systems are helpful in determining water dynamics and spread
of pollutants(Ritchie et al., 1990). In the open ocean, these parameters have
been effectively and easily monitored from remote sensors by constructing
simple empirical or ratio algorithms at different remote-sensor
bands(Gordon et al., 1983). However, in optically complex inland water the
task is often much more difficult due to the presence of suspended minerals
and dissolved organic matter, that vary independently of phytoplankton and
can overwhelm the spectral signature of chlorophyll. There is also
considerable scattering (even in near-IR) from inland waters with high
sediment. Thus, the transfer function becomes a nonlinear problem and
estimation of water quality parameters, especially Chl.a becomes difficult
with regression analysis (Lathrop, 1992) or with model based approaches
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Figure 1. Location of lake
Kasumigaura in Japan.



such as Principal Component Analysis(IOCCG, 2000). Non-linear optimization techniques seem to solve the
problem. However, the technique is weak to local correlation between the parameters, which is often present, and
to wide-range of concentrations. Chebychev polynomial may be another choice though it is quite complex to
implement. Neural Network is one of the simplest and fastest to implement choice while modeling in nonlinear
environment and has the ability to combine detailed physical description of the remote sensing process in the form
of a forward model. It is a proven tool for successful modeling in various nonlinear geophysical transfer
function(Thiria et al., 1993), and most of all it does not depend on mutual relationship between the parameters
under investigation. Recent years have seen several publications on the use of neural networks for estimation of
coastal and oceanic Chl.a (and SS) from simulated bands of ocean-color sensors, such as, SeaWiFS(Gross et al.,
1999), MERIS(Sciller et al., 1999) and OCTS(Tanaka et al., 2000). Keiner et al.(1998) estimated Chl.a and SS
from LandsatTM visible bands using in-situ data. Use of in-situ data in modeling is preferred as the model can
account for the realistic situation involving various noises present in the data(Gross et al., 1999).

This study is a similar effort to the above studies, however with the fact that, the site under consideration is a
shallow inland water body eutrophic round-the-year, and with wide range of concentration for both Chl.a and
SS(especially, in the blooming season). Here, neural network is employed to demonstrate a robust methodology for
estimating surface Chl-a and SS concentration at the lake Kasumigaura, Japan from LandsatTM imagery. Past
studies with conventional algorithms failed with poor results in estimating water quality of the lake (Oki, 1997).
Another purpose of this study is to know the trophic state of the lake in low-productivity season by mapping the
distribution of chlorophyll. In this study, we are using single day data, however, the method can be applied for
temporal modeling with the collection of data at different times of the year concurrent with remote-sensor overpass.

1.1 Landsat Thematic Mapper as water color monitor

LandsatTM is not primarily designed for aquatic applications unlike
some of the recent sensors dedicated to water color remote sensing, e.g.
SeaWiFS, MERIS, IRS-OCM, MODIS with their suitable and narrow
bandwidths. However, it has been the best available source of data for
monitoring inland water quality due to its higher spatial
resolution(30m) compared to the above sensors(0.3~1.1km). Several
studies have explored the possibility of using it for estimating water
quality parameters(especially, suspended sediment) in coastal and
inland waters(Ritchie et al., 1990; Lathrop, 1992; Brivio et al., 2001)

2. STUDY SITE

Study site is the lake Kasumigaura, the second largest lake of Japan with an area of 220km2 and an average depth
of 4m (Fig.1). Several important cities are located around it which are affecting (and are being affected) by the lake
water quality. The lake experienced severe bloom of blue green algae in `70s. Since then, several drastic measures
have been undertaken to control the eutrophication. Present lake water quality is better than in `70s, but still below
standards set for a healthy lake. Around 22 rivers flowing to the lake caries huge amount of sediments(around 1
Mm3/year) and local government spends heavily each year on dredging the sediments out. Degradation of lake
water quality is affecting environment, agriculture, fish-culture, recreation, drinking water quality etc. and effective
monitoring techniques are need of the hour for efficient management of the same(Hashimoto, 1995).

3.  IN-SITU AND SATELLITE DATA PROCESSING

Surface water samples were collected for Chl.a(HPLC) and SS concentrations for a total of 29 locations spread
over the lake (shown in Fig.1) on 19th January, 2001 concurrent with LandsatTM overpass. In-situ Chl.a concentrat-
ion is found to vary from 36.5 to 56.2µg/l and SS concentrations varying from 5.5 to 30.1mg/l. January and

February is the coldest month in the region with lowest chlorophyll level
in a year. All the samples were collected between 08:30 to 11:30JST to
coincide with the LandsatTM overpass at around 09:55JST. Fig.2 shows
the plot of Chl.a versus SS concentrations for the 29 locations. It should
be noted that, ~50% of Chl.a concentrations fall in the range 39-42µg/l.

The Landsat TM imagery for 19th January, 2001 is acquired from NASDA.
The day was clear with no cloud over the lake area.For atmospheric
correction, dark pixel subtraction method is used (Brivio et al., 2001).
Usual methods used in the mid-oceanic waters using near-IR bands are not
suitable for sediment-laden inland waters as the assumption of zero water-

Figure 2. In-situ Chl.a .vs. SS at lake
Kasumigaura on 19th Jan,2001
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Figure 3. DN of TM bands before
and after atmospheric correction
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leaving radiance in near-IR breaks down(IOCCG, 2000). This is a first order techniques where the lowest DN value
in a certain band is subtracted from that band over the entire image. The effect from atmosphere is assumed
constant over the entire lake. For single scene imagery, however, this type of atmospheric correction is not much of

significance as it accomplices just the magnitude-reduction of DN
values. Fig.3 shows the plot of DN values at TM bands1-4 before and
after the atmospheric correction. While dealing with multi-temporal data,
however, a more accurate method should be used (Keiner et al.,1998).

The portion containing the lake Kasumigaura is extracted from the TM
imagery and geo-referenced to a standard 1:50,000 map. Average DN is
found to approach a fairly constant value for a 7 by 7 pixel array size
and hence it is selected as the minimum appropriate to reduce sensor
noise. The whole image is re-sampled to a pixel size of 7 by 7 and DN
values for all the 29 in-situ locations are extracted out (Figure 4). A
land-mask is applied using NDWI (Mcfeeters, 1996).

3.1 Selection of bands

The three visible bands are generally sufficient for estimating Chl.a
and SS in surface water(Bukata et al., 1995). However, several
studies have indicated that, near-IR wavelength-range could be
useful(Ritchie et al., 1990; Lathrop et al., 1992; Han et al., 1997),
especially, when the spectral behavior of the of the water body is
dominated by SS present in surface water. With the increasing concentration of suspended sediments, the reflected
radiance tends to saturate to give a curvilinear relationship between the two(Curran and Novo, 1988). The point of
saturation is wavelength dependent and with SS concentrations between 0 to 50 mg/l, it can influence any of the
wavelengths, thus effecting the estimation of Chl.a. From the in-situ data, it is found that SS has very strong
correlation with band 1 to 4, especially with band 3 and 4 (R2>0.74). Individual correlation (R2) of these first four
bands of TM with Chl.a concentrations are 0.25, 0.32, 0.30 and 0.23. Bands 5 & 7 gave correlation <0.01. Our
initial test-runs with neural network using the first four TM bands also gave better result than with only the three
visible bands. Hence, the first four bands(Table 1) of LandsatTM are selected for modeling.

4. NEURAL NETWORKS

Several types of neural networks are available depending on the type of application. This study uses the popular NN
algorithm, namely, the Back-Propagation Neural Network(BPNN) (Fausset, 1994). Following section details the
neural network(s) used in this study.

4.1 Algorithm

In our study, Chl.a and SS are modeled separately by two independent network
models to enhance performance(Kasilingam et al., 1997). This is necessary as
we have fewer data than prescribed for robust modeling (explained later). Fig.5
shows the basic structure of NN used in this study. BPNN is a feed-forward
multi-layer network comprised of three distinct layers, namely, input layer,
output layer and hidden layer. Hidden layers may be more than one. In this
study only one hidden layer is used as it is proven to be sufficient in modeling
any complex problem. Nodes (or neurons) in each layer is connected to next
layer by weighted interconnection. In our case, inputs are the DN values at first
four bands of Landsat TM and output is either Chl.a or SS concentration. The
main concept with NN modeling is to find the appropriate weights in the
interconnections which can simulate in-situ Chl.a or SS concentration from the
given in-situ DN values. This is done as follows:

The inputs (in-situ DN values) coming from the input layer nodes to any hidden layer node undergoes two
functions before becoming the output from the hidden layer. The first function is a summation function which sums
up the products of inputs and the corresponding weights of the links. This sum is then added to a `bias` and
undergoes the second function, known as the ‘squashing function’, thus producing the output from the node. Same
procedure of summation and squashing is performed at the output layer nodes using the outputs from the hidden
layer nodes. The result is the network output at the output node as given in Eqn. 1:

Table 1. First four Bands of LandsatTM
Spectral band Bandwidth (ôôm)

TM1 (blue) 0.45-0.520
TM2 (green) 0.52-0.60
TM3 (red) 0.63-0.69
TM4 (near-IR) 0.76-0.90

Figure 5.  Neural network
configuration used in this study
(see text for notations; biases

are not shown)
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where, yk:network output(concentrations of Chl.a or SS) at k;  j: hidden

node (total m); i: input node (total n); TMi: input to the network; uij, vjk:

weights of the links; αj,βk: biases; f: Squashing function. Binary sigmoid

is used as the squashing function given in Eqn.2:
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where, ‘g’ is the slope parameter(Fausset, 1994). The final output (yk) is
compared with corresponding in-situ concentration. The difference is
then back-propagated to update the weights and biases in the networks.
This process of simulation by minimizing the difference is called
`training` of the network. The ability of the trained network to predict
from unseen data is then checked with the validation data.

4.2 Training and Validation data

Twenty samples out of 29 is selected as training data. Selection of
training data is done  by  first arranging the entire sample set in
decreasing order of Chl.a (or SS) concentration and then, starting from
the top, picking up every two values and leaving one. Again, out of the
remaining nine samples, six are used as validation data and the rest three
samples are used during training process as the training-testing data(Fausset, 1994). For effortless robust training,
around 150 training data are required for a 4-6-1 network expected to give 80% accuracy (Fausset, 1994).
Therefore, the role of training-testing data is significant to develop an effective model (with a small training data-
set) which can generalize well from unseen data (validation data). All in-situ concentrations are scaled to [0.1,0.9]
to match with the range of binary sigmoid function, [0,1].

4.3 Hidden layer nodes

Using too few hidden layer nodes may not resolve a complex problem, while, by using too many the network
looses the capacity to generalize by overfitting(Masters, 1993). Thus, initial training runs on the networks is
performed to find the optimum number. Six(6) and 3 hidden layer nodes are found to be sufficient for satisfactory
modeling of Chl.a and SS respectively without overfitting. In this study, numbers of input nodes and output nodes
are 4 and 1 respectively for both networks estimating Chl.a and SS.

4.4 Training parameters

Batch updating of weights is adopted. Error  during  the  training  process is monitored with Mean Squared
Error(MSE) (Masters, 1993). Training is started with a training rate of 0.3 and varied as the training progresses.
Adaptive slope for the sigmoid function, as described in Fausset(1994) is incorporated. Training is terminated when
the RMSE of the training-testing set between two consecutive passes reaches the minimum.

5. RESULTS AND APPLICATION:

5.1 Regression Analysis

To compare the performance of the neural network with standard method of water quality estimation various linear
and logarithmic regression models are tried. Table 2 (next page) lists some of comparable regression models for
chlorophyll-a estimation and developed using the entire in-situ data. Many in the list are from published literature
and were used effectively to estimate inland water quality at respective sites. In a similar way, various models are
tried for estimation of SS and the best one is selected. Upon selection of the best combination of bands or band
ratios, coefficients of regression model equations are re-calculate using only the training data used in NN modeling.
This ensures un-biased comparison with the NN models. Eqn.3 and 4 gives the best regression models :
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Chlorophyll(C, ôg/l):
lnC = 48.31 – 1.52 TM2 – 5.579[TM3/TM1]2               (3)

Suspended Sediment (S, mg/l):
S = 6.7571 + 0.298858 TM1 + 2.922987 TM3     (4)

Significance parameters, namely, coefficient of determination(R2) and Root
Mean Square Error(RMSE) are computed for both NN and regression models.
Due to narrow range of in-situ concentrations, %-age RMSE (with the mean) is
not a good measure to compare between the models. Hence, Relative MSE (Rel.
MSE) (Masters, 1993) is also computed for all the models. Overall performance
of all the developed models over the entire data is computed. From the
comparison statistics(Table 3) it is evident that, NN outperforms regression
analysis in estimating both Chl.a and SS at the study site. However, in
estimating SS, regression has comparable performance(R2:0.85) to NN (R2:0.92).

The main reason for the poor performance of regression analysis is it’s inability to model the unknown non-
linearity of the transfer function arising from factors such as overwhelming of signature of chlorophyll by other
components, such as, Colored Dissolved Organic Material(CDOM), contributing to the lake water color(IOCCG,
2000). Other possible reasons can be errors in sampling, errors in match-ups between satellite imagery and in-situ
location etc. Fig.6 shows graphical representations of comparison between neural network and regression analysis.
From the fig.6 it is evident that, NN find it difficult to model Chl.a in the range 39~42µg/l, comprising of ~50% of
total samples. This is due to the fact that, LandsatTM radiance(DN) value are usually not exactly same for same
concentrations due to errors in match-ups or difference of scale between satellite and in-situ data.

5.2 Application

Finally, spatial distribution diagrams of Chl.a and SS at the lake is
generated by passing the LandsatTM imagery through the respective
NN model. Fig.7 shows the NN derived Chl.a and SS at the lake.
Banding effects present in the diagrams are inherited from the original
TM imagery and no de-striping procedure is performed. From the
diagrams, it is seen that, SS variations are not consistent with Chl.a
variations throughout the lake which is also evident from the in-situ
data. Low-Chl.a with high SS(Tsuchiura side, refer fig.1), high Chl.a
with low SS(middle and towards Tsuchiura) and low Chl.a with low
SS(middle left) combinations can be seen. High Chl.a with high SS
pattern is hardly present. For a Chl.a concentration of 30µg/l (lowest
range in the index, Fig.7a), Trophic State Index(TSI) by Carlson(1976)
is 64. Therefore, >90% of the lake is euthropic (TSI>50) even in this
low-productivity season.

5.3 Future direction

The developed model dealt with single scene imagery. It could
satisfactorily model the Chl.a and SS in a low productivity season at the
site. However, in the future, more samples at different times of the year
representing different spectral characteristic of the lake water is
necessary for a robust temporal model. Moreover, the method can be
extended to model other optically active parameters such as DOC,
CDOM or secchi disk depth at the site using recently launched
ASTER(doesn`t have blue band) along with LandsatTM. Development
of a similar model for estimating water quality parameters in coastal
areas from MODIS imagery incorporating the atmospheric correction
scheme in the model itself (using relevant MODIS bands) can provide
for reliable estimates of coastal water quality and aquatic bio-mass.

Table 3. Comparison statistics between neural networks and regression analysis (models applied to entire data)
Chlorophyll-a Suspended Sediment

R2 RMSE(ôg/) Rel. MSE(%) R2 RMSE(ôg/l) Rel. MSE(%)
Neural Network 0.93 1.53 8.10 0.92 1.47 8.00
Regression 0.31 4.39 53.29 0.85 2.14 16.78
        RMSE: Root Mean Square Error;  Rel. MSE: Relative Mean Square Error

Figure 7.  Maps of Chl.a(µg/l) and
SS (mg/l) at the lake Kasumigaura
on 19th Jan, 2001 by neural networks

Dependent Independent
(TM Bands)

R2

Chl.a 1/2 0.27
Chl.a 3/1, 1 0.34
Chl.a 3/1, 2 0.35
Chl.a 3/1, 3 0.33
Chl.a 3/2, 1 0.25
Chl.a (3-1)/2 0.29
Chl.a 1, 2, 3, 4 0.35
Chl.a 1, 2, 32, 42 0.359

ln(Chl.a) 1, 2, 32, 42 0.368
ln(Chl.a) ln(1), ln(2) 0.35
ln(Chl.a) 2, (3/1)2 0.372
ln(chl.a) 1/ln(3+1) 0.366

Table 2.  Regression models
developed for Chl.a estimation



6. CONCLUSION: Neural network model with only one hidden layer is shown to be useful in satisfactorily
estimating lake water quality from a LandsatTM imagery in a low-productivity season. Spatial distribution maps of
chlorophyll and suspended sediment are produced by the developed model. Neural network was able to model the
nonlinear transfer function better than the traditional regression analysis. However, the NN model found it difficult
to model in large number of samples in a very narrow concentration range. It is found that, suspended sediments
can be effectively estimated by simple regression in a low productivity season in the lake, though a network model
provides for the best result. In the future, for a robust model to effectively represent the lake water quality,
sampling at different times of the year is proposed to account for varying optical characteristics. As shown in this
study, LandsatTM with neural networks can be quite useful getting synoptic views of small to medium size
optically complex water bodies like lake Kasumigaura where modern sensors like MODIS or SeaWiFS become
redundant due to their low spatial resolution, and where traditional algorithms fails. In the future, the methodology
can be extended to monitor other parameters such as DOC, CDOM etc. using recent sensors such as ASTER along
with LandsatTM.
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