
USING NDVI IMAGE TEXTURE ANALYSIS FOR BUSHFIRE-PRONE
LANDSCAPE ASSESSMENT

Keping CHEN a *, Carol JACOBSON b, Russell BLONG a

a  Natural Hazards Research Centre, Macquarie University, NSW 2109, AUSTRALIA
b Department of Physical Geography, Macquarie University, NSW 2109, AUSTRALIA
* Tel: (61)-2-9850-9473, Fax: (61)-2-9850-9394, E-mail: kchen@laurel.ocs.mq.edu.au

KEY WORDS: Bushfire, NDVI, Texture Number, Fractal Dimension, Remote Sensing

ABSTRACT: Bushfire, as a major external ecological factor, diversifies bushland environments. Monitoring
bushfire-prone landscape patterns and vegetation recovery after fires is critical for the long-term bushland
management. Landscape ecology studies using remotely sensed imagery have been effective to identify the
relationship between landscape patterns and ecological processes. This paper uses the Normalised Difference
Vegetation Index (NDVI) as a surrogate for vegetation biomass and applies two texture statistics to quantitatively
examine biomass variability in bushfire-prone landscapes. Specifically, the texture number is used to describe
landscape heterogeneity and post-fire vegetation recovery, and the fractal dimension is applied to evaluate
landscape pattern changes with post-fire vegetation successional stages. Results show that bushland spatial patterns
are heavily affected by bushfires and human disturbances, and the fractal dimension of post-fire vegetation
decreases with successional stages. It is suggested that the use of NDVI image texture analysis is a potential
technique to examine pre- and post-fire landscape changes, and these methods can be applied using remotely sensed
imagery in a cost-effective way.

1. INTRODUCTION

Bushfires affect the distribution and evolution of vegetation communities and other ecosystem processes, and have
far-reaching implications for bushfire-prone landscapes. In Australia, most vegetation types are fire adapted (Gill,
1981), and bushfire is a major factor for vegetation regeneration within the eucalypt forests (Florence, 1996). For
example, during a post-fire recovery of tree crowns, the eucalypt may regrow more vigorously than it did before the
fire. Trees may be defoliated and shrubs burnt back to the ground level, yet within only a few years, the tree crowns
and understorey shrubs may have recovered their pre-fire state (Florence, 1996). Monitoring of landscape changes
and vegetation successional stages is important for bushland management. Quantitative assessment of spatial
heterogeneity is a useful means of increasing our understanding of bushfire-prone landscapes. Landscape ecology
studies examining the relationship of landscape patterns and their changes on ecological processes, with remotely
sensed imagery have been effective and successful at regional or local scales (e.g. Haines-Young et al., 1993;
Frohn, 1998).

Previous research on the use of remotely sensed imagery in identifying vegetation changes between pre-fire and
post-fire shows that biomass-based vegetation indices can be very useful (Marchetti et al., 1995). A commonly used
vegetation index is the Normalised Difference Vegetation Index (NDVI). Heavily vegetated areas usually display
high positive values, whereas high density residential areas have low NDVI values. Landscape ecology studies with
NDVI images have been recently reported. For example, monitoring the changes of post-fire Mediterranean
vegetation structure is feasible using a fractal analysis of an NDVI image derived from a Landsat Thematic Mapper
(TM) image (Ricotta et al., 1998). Chuvieco (1999) describes and compares several texture statistics (e.g. spatial
auto-correlation, diversity) to measure landscape pattern changes, using pre- and post-fire NDVI data derived from
both TM and Advanced Very High Resolution Radiometer (AVHRR) images.

The purpose of this paper is to apply two image texture statistics, texture number and fractal dimension, to evaluate
the bushfire-prone landscape heterogeneity and spatial pattern changes as post-fire vegetation undergoes recovery.
Different areas of a bushfire-prone region are tested.

2. STUDY AREA AND DATA SOURCES

The Shire of Hornsby (Figure 1), located approximately 20 km north of the Sydney central business district, is a
local government area of the state of New South Wales, Australia. The area is characterised by its diverse natural
environment with extensive coverage of bushland. Bushlands provide habitats for flora and fauna, reduce soil
erosion and protect water quality, but they are associated with significant bushfire hazard and risk (e.g. Conroy,
1996; Hornsby Shire Council, 1996).



Two primary data sources were used in this study: (1) a Landsat TM image captured on 9 November 1991, and (2)
local fire history maps of 1989 and 1990 from Hornsby Bushfire Service. The TM image was resampled by the
nearest-neighbour algorithm to an Australian Map Grid (AMG) coordinate system with a spatial resolution of 30
metres. An NDVI image was created from bands 3 and 4 of the Landsat TM: (TM4-TM3)/(TM4+TM3).

To quantitatively assess the bushfire-affected landscape, four different areas were used (Figure 1). Bushland A was
burnt in the summer of 1989, two years before the TM image was captured, and Bushland B was burnt in the
summer of 1990. Bushland C, without recent fires, represents an undisturbed vegetation structure, whereas the
Residential area D represents the area where human impacts take place. Through visual inspection of the raw TM
image, Bushland B can be discriminated from surrounding non-burnt areas. However, Bushland A cannot be easily
identified from the image. Data sets to be analysed for Bushland A were carefully selected for two reasons. First,
fire history maps are usually very generalised, so data generated by random sampling schemes may include many
spots which were not burnt in a fire. Second, a bushfire generally does not burn all vegetation in a region. Bushfire
behaviour depends on environmental factors, such as aspect, slope and elevation. Slopes which are generally in
shade have cooler temperatures and vegetation there contains higher moisture. Some vegetation in valleys will not
burn while trees on drier slopes are readily burnt. Therefore, samples for Bushland A were selected from bushland
ridges.
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Figure 1. Shire of Hornsby and Bushfire Burnt Areas in 1989 and 1990.

3. METHODS

3.1 Texture Number (TN)

Many texture statistics have been applied to process digital imagery (e.g. Haralick et al., 1973). For example, in a
landscape ecology study with an NDVI image, texture statistics have been used to create spatial information on
vegetation biomass variability (Chuvieco, 1999). Due to its computational efficiency (Ricotta et al., 1996), the
absolute difference statistic described by Rubin (1990) was chosen for use in this study. Using a 3 × 3 pixel window
as a basic spatial unit, the statistic sums the absolute values of the differences between all horizontally and
vertically adjacent pixels within a moving window and replaces the central pixel number with the calculated value.
The TN of R(i, j) can be calculated as illustrated in Figure 2.
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Figure 2. Texture Number Calculation with a 3 × 3 Pixel Window.

3.2 Fractal Dimension (D)

Research (e.g. De Cola, 1989; Turner, 1990) has shown that fractals can inform a great variety of landscape ecology
problems because they can conveniently depict many of the irregular, fragmented patterns found in nature
(Mandelbrot, 1983). Since ecosystems are open and dynamic systems, it could be expected that changes in the
dynamics are reflected in corresponding spatial patterns. Fractal geometry can be used to objectively measure
important aspects of complex vegetation patterns and to describe the underlying dynamics which give rise to these
patterns (Hastings and Sugihara, 1993).

Fractal dimension is usually derived by computing the slope of a regression line between the natural logarithm of
perimeter and area pairs calculated from the feature(s) of interest. This technique accounts only for patch shape and
is generally only applied to large landscapes (Olsen et al., 1993). A non-regression method to calculate the fractal
dimension for a small landscape, such as a classified image in a grid-based GIS, was discussed by Ricotta et al.
(1998). The method takes patch geometry and patch juxtaposition into account. The equation for calculating the
fractal dimension for individual patches in a gridded GIS layer is as follows:
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Where: A = total patch area, P = total patch perimeter, and D = fractal dimension. A more detailed explanation is
given in Olsen et al. (1993) and Ricotta et al. (1998). The method calculates the fractal dimension of a sub-
landscape. The calculation of D with a 5 × 5 pixel window sub-landscape is shown in Figure 3.

Figure 3. Example of How the Fractal Dimension is Calculated Using a 5 × 5 Pixel Window.

Using the above equation, when a sub-landscape has only a single value, D is 1.0. On the other hand, for a highly
heterogeneous sub-landscape composed of entirely different single cell patches (e.g. 25 different patches for a 5 × 5
window), D would be equal to 2. This sub-landscape represents the highest diversity possible and therefore has the
highest fractal dimension possible (Ricotta et al., 1998).
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4. ANALYSIS AND RESULTS

The possible range of NDVI is from -1.0 to 1.0. Before calculating the texture number and the fractal dimension,
the initial NDVI image was scaled to an 8-bit image (0-255), with a value of 127 equal to a computed NDVI of
zero. Two programs were written to calculate the texture statistics from the scaled NDVI image, and statistical
analysis was conducted using MATLAB. The landscape heterogeneity of the four areas described above was
quantified by calculating TN. Prior to calculation of the fractal dimension, a smoothing filter (i.e. 5 × 5 pixel
window) was applied to the scaled NDVI image, to overcome the wide variability of the image. Three areas (i.e.
Bushland A, Bushland B, and Bushland C) were used for the calculation of fractal dimension.

4.1 Using TN to Assess Landscape Heterogeneity under Bushfires and Human Perturbations

To compare the TN distribution for the four areas, histograms with 20 classes between maximum and minimum
values are shown in Figure 4. Figure 5 shows the stratifications of the TN for the each area. Bushland C without
fires in recent history exhibits the lowest TN values and variations of the value are low. On the other hand, the TN
distribution for the residential cover type displays very large TN values with considerable variations. In the study
area, bushland without recent fires tends to have a high degree of homogeneity, and residential area under intensive
human activities results in spatial heterogeneity. These findings are in agreement with the results of Ricotta et al.
(1996).

Figure 4. Histograms of the NDVI Image Texture Number for Four Areas. (a) Bushland C without fires, (b)
Bushland A burnt in 1989, (c) Bushland B burnt in 1990, and (d) residential area.

Figure 5. Notched Boxpots Show the Stratifications of the NDVI Image Texture Number for Four Areas. The box
has lines at the lower quartile, median (notched line), and upper quartile values. Outliers are data with values
beyond the ends of the whiskers and plotted as ‘+’ symbols.

By comparing the TN values of Bushland A and Bushland B, the NDVI variability of Bushland B is much greater
than that of Bushland A, indicating a great degree of spatial heterogeneity. The similar TN distributions of
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Bushland C without fires and Bushland A suggest that Bushland A is close to homogeneous vegetation patterns
after a two-year period of regeneration. Irregular patches of the land cover have exceedingly large TN values. The
outliers of Bushland A imply that some fire scars in the sample areas still exist or may be due to other factors such
as sandstone benching. Bushland B was burnt in the summer of 1990, about a year before the date of image
acquisition, whereas Bushland A was burnt in 1989, about two years before the acquisition date of the image.
Bushland A has had approximately double the time for bush regeneration than Bushland B, and therefore Bushland
B retains more profound fire impacts. This analysis indicates that texture number could serve as a good indicator of
vegetation regrowth to discriminate the phases of vegetation succession after fires.

4.2 Using Fractal Dimension to Assess Post-fire Vegetation Recovery

The distribution of fractal dimension for three different bushlands is shown in Figure 6. From sub-figure 6 (b), the
median D for Bushland B burnt in 1990 is larger than that of Bushland C (without recent fires) and Bushland A
(burnt in 1989), while Bushland C and Bushland A have very similar values and ranges. These results indicate that
Bushland A, with a similar landscape arrangement to Bushland C, has recovered its spatial vegetation patterns two
years after the fire. In contrast, one year after the fire Bushland B retains heterogeneous landscape patches and thus
results in a very large D. These results imply that the D value associated with a bushland cover decreases with
vegetation successional stages. Late successional patterns are less patchy than early successional patterns. Thus, D
could be seen as an indicator to examine the dynamics of bushland vegetation recovery after fires.

Figure 6. Fractal Dimension of the Scaled and Filtered NDVI Image Based on Different Window Sizes at Two
Stages. First, a 5 × 5 window was used to decrease high variability of the input NDVI image, and 3 × 3 (a), 5 × 5
(b) and 7 × 7 (c) windows were tested to generate D. Second, 5 × 5 (b) and 7 × 7 (d) windows were used to decrease
high variability of the input NDVI image while a 5 × 5 window was used to generate D.

The calculated fractal dimension values depend on the analysis (e.g. filtering) involved. The use of different
window sizes in image texture analysis may generate different results. Therefore, a series of window sizes at both
the filtering stage of the scaled NDVI image and for the calculation of D were tested. Two comparisons were tested.
First, using a constant window size (5 × 5) to filter the scaled NDVI image, different window sizes (3 × 3, 5 × 5,
and 7 × 7) were used to calculate D for the three bushland areas. Comparison of Figure 6 (a, b, c) shows the
calculated median D for Bushland C and Bushland A (approximately 1.8) differed only slightly, and was
consistently smaller than the calculated median D for Bushland B. In other words, D was relatively insensitive to
different window sizes in the fractal calculation. Second, using two window sizes (5 × 5 and 7 × 7) to smooth a
scaled NDVI image and the same window size (5 × 5) to generate D (Figure 6 (b, d)), a large filter window (i.e. 7 ×
7) resulted in lower D values (approximately 1.7) for Bushland C and Bushland A, and a larger difference between
these two areas and Bushland B. This also suggests that the spatial patterns of Bushland C and Bushland A tend to
be more homogeneous than those of Bushland B.
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5. CONCLUDING REMARKS

As a result of past bushfires, urban encroachment and bushland management practices, bushfire-prone landscapes
have complex spatial patterns. Applications of a texture number and a fractal dimension to the three vegetation
areas in this paper indicates that after bushfires landscape patterns tend to become more homogeneous as vegetation
regenerates. This result agrees with previous observations in the forest of the Mediterranean region (Chuvieco,
1999). The use of texture statistics with an NDVI image to assess bushfire-prone landscapes has potential to
quantitatively monitor landscape pattern changes and post-fire vegetation recovery. As these methods are relatively
easy and based on remotely sensed images, they can be applied to large areas in a cost-effective way. An
understanding of bushfire-prone landscapes is useful for bushland management.

The methods may be further improved by taking into account the changes in NDVI values with phenological cycles
and seasonal variations, and the intensity of different bushfires. If a time-series of images over the same area are
available, the post-fire spatial pattern changes could be monitored temporally.
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