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ABSTRACT: 

Knowledge of the point spread function (PSF) for a given image acquisition system is of fundamental 
importance since it enables an objective assessment of the imaging performance. Moreover it allows 
the utilisation of image restoration techniques for posterior image improvement. Pre-flight measure-
ments and calibrations using an opti cal bench partly make a better understanding about the imaging 
system possible but are expensive – particularly in cases with a limited budget like for example mini-
satellite missions or where the opportunity to undergo rigorous testing procedures on the flight-model 
are limited. However, there are cheaper alternatives, which even can be utilised after launch with the 
additional advantage of providing a tool to monitor possible instrument degradations. Several scanners 
provide modes for obtaining imagery of the same scene with different spatial resolution. These images 
can be used to solve for the unknown imaging function, whereby the more highly resolved scene is 
used as an estimate of the unblurred version of the less highly resolved data, with the PSF itself esti-
mated using deconvolution te chniques. This paper investigates different algorithms and analyses the 
inherent critical assumptions if image dou blets with different spatial and spectral characteristic are 
employed. Examples will be shown for a scanner called MOMS, which provides a typical example for 
the attainable performance of imaging systems in the midrange multispectral resolution. 

1. INTRODUCTION 

An important element for the characterisation of a satellite’s performance is the point spread function 
(PSF). Furthermore the function can be used in image restoration to improve the spatial resolution and 
in image analysis, e.g. to locate certain image features to sub-pixel accuracy. The estimation of the 
imaging function is often not straightforward since the electro -optical systems used in nowadays satel-
lites con sist of a number of components, each with properties that may not be precisely characterised or 
which exhibit chang ing characteristics. Pre-flight meas urements and calibrations using an optical bench 
partly allow gainin g a better understanding about the imaging system. Unfortunately many of the 
upcoming small satellite missions do not permit the involved costs since the highly specialised 
manpower and the required optical facilities are expensive. Moreover the actual fl ight model often 
cannot be exposed to the same rigorous test procedures like the evaluation model to minimise 
undesired ageing, contamination etc.  

However, several scanners provide imagery with different spatial resolution of the same scene, which 
can be either obtained simultaneously or within a short period in time. A minimisation of the time delay 
between the acquisitions of the corresponding image sets is considered necessary to reduce the impact 
of distortions from changed viewing conditions etc. The differently resolved images can be used to solve 
for the unknown imaging function whereby the more highly resolved scene is used as an estimate of the 
unblurred version of the less highly resolved data, with the PSF itself esti mated using deconvolution 
techniques. The paper investigates two different approaches, namely the Wiener filter and the 
maximum likelihood estimation, whereby both are implemented iteratively to support additional 
constraints on the solution. The approach relies on a number of assumptions (McNeill and Pairman, 
1998). First, the spectral response is assumed to be nearly the same be tween the two different image 
sets. This holds true for some cases, e.g. with respect to the panchromatic and the second multispectral 
band of SPOT-4, but generally can only be approximated by a weighted sum of the typically lower 
resolved multispectral bands. The second inherent assumption requires that the corresponding 
instruments should have the same spatial frequency characteristic. Third the spati al frequency energy 



of the more highly resolved image must extend far beyond the sampling interval of the more coarsely 
given imagery to enable a reason able estimate. 

As an example for the capabilities of the proposed method images from a scanner called MOMS were 
chosen. The system flew in different configurations onboard of Space Shuttle missions and the MIR 
Space Station. Although the design does not reflect the state-o f-the -art with respect to nowadays high-
end scanners it provides a reasonable illustration since many upcoming mini- and small-satellite 
mission of space emerging counties will provide comparable imaging facilities. In case of solely 
multispectral acquisition abilities a more highly resolved image from an airborne camera has to be used 
for the validation of the satellite’s scanner performance.  

2. IMAGE DEGRADATION PROCESS AND IMAGE- BASED BLURRING ESTIMATION METHODS 

The linear space-invariant image degradation process can be modelled (Bates and McDonnell, 1986) 
by  
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where g is the blurred image, f the observed object, h the space -invariant PSF itself, and n the 
uncorrelated additive noise. The pair (x,y) represents the location in the continuous two-dimensional 
space. However, in practice the functions are sampled at discrete locations and the integral on the right 
hand side of Equation (1) becomes a summation. Therefore the equation can be rewritten as 

 ( ) ( ) ( ) ( ),,,,, yxnyxhyxfyxg += o  (2) 

where the operator � represents 2-dimensional convolution. Imaging systems are seldom truly space-
invariant, but Equation (2) usually holds true within a limited region of a measured image. The 
transformation of the equation into the Fourier domain leads to  

 ( ) ( ) ( ) ( ),,,,, vuNvuHvuFvuG +=  (3) 

where G, F, H , and N are the Fourier transforms of the corresponding lower case variables and the pair 
(u,v) represents the location in the spatial frequency domain. The convolution becomes a point-wise 
multiplication of the object spectrum with the optical transfer function (OTF) H. The modulation transfer 
function (MTF) is the magnitude of H and, by assuming a zero phase, i.e. an aberration free system, an 
estimate of the PSF can be obtained by the inverse Fourier transformation of the MTF. 

Deconvolution techniques invert the impact of the PSF and enable the computation of more highly 
resolved im ages. Equivalently inverse filtering techniques compensate for the influence of the MTF in 
the Fourier domain. Henceforth both domains will be used synonymous since for every algorithm in one 
domain there is an equivalent in the other domain. For a reliable deconvolution precise knowledge 
about the noise model, the PSF, and / or some constraints with respect to the solution space are 
required. In the first case special estimation techniques  (Gao, 1993), (Rank et al., 1999) can be utilised. 
However, the estimation of the imaging function in the second case is often not straightforward since 
the image acquisition system consists of a number of components, each with properties that may not be 
precisely characterised or which exhibit changing characteristics. Papers dealing with the task of esti-
mating the PSF can be grouped into theoretical ap proaches , direct pre -flight measurements of the 
instrument characteristics, and techniques for the estimation of the blurring function from images. A 
more detailed overview about the three groups with corresponding results related to remote sensing can 
be found in (Bretschnei der et al., 2001). In summary most of the model-based approaches consider 
only parts of the image acquisition chain and generally suffer from modelling and parameterisation 
uncertainties. Pre-flight measurements are limited to certain components of the system, too, and like the 
first group cannot describe any degradation over time. The main advantages of image-based 
techniques are the low costs, the utilisation even if no direct access to the scanner and its design details 
is provided, and the monitoring of time dependent aspects. Therefore this paper focuses on this group 
of estimation techniques. However, the proposed approach extends beyond the often utilised extraction 
of a small set of profiles over well-known sharp edges and the subsequent parameter estimation 
assuming that the PSF is closely approximated by a Gaussian distribution (Berger and Kaufmann, 
1994). The major drawbacks of the profile technique are the generally required supervision, the problem 



of repeatability if no adequate features are contained in the image, and the frequently made 
simplification that the PSF is radial symmetric. 

3. BLUR IDENTIFICATION METHODS  

In the following two different iterative approaches are summarised that enable to estimate th e PSF h  
and MTF H  in Equation (2) and Equation (3), respectively.  

3.1. Wiener Filter 

Originally the usage of the Wiener filter was proposed by McNeill and Pairman (McNeill and Pairman, 
1998) to estimate the PSF of SPOT using the twin instrument configuration. The almost identically 
instruments HRV-1 and HRV-2 were used simultaneously to capture an image of the same ground 
target, with essentially identical view ing geometries (i.e. the same mirror step position), with one 
instrument in panchromatic mode and the other in multispectral. With the panchromatic band as an 
estimate of the unblurred version of the multispectral response, at least out to the Nyquist frequency of 
the multispectral sensor, a modified fo rm of the classical Wiener filter restoration method was used to 
compute the MTF. Thus 
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where              is an estimate of H(u ,v), GP is the spectrum of the more highly resolved panchromatic 
band image, and GM the spectrum of the combination of the multispectral bands. A detailed description 
for the calculation of GM will be provided in Section 4. The parameters ΦN and ΦH in Equation (4) are the 
power spectra (as functions of spatial frequencies) of the noise and the actual MTF, respectively. If 
white noise is assumed the corre sponding power spectrum ΦN is uniform. For a more accurate estimate 
either a noise estimation algorithm (Gao, 1993), (Rank et al ., 1999) can measure ΦN or the equation 
ΦG=|H|2ΦF +Φ N is utilised. Since knowledge about the MTF itself is required in the latter case, this paper 
suggests an iterative version of Equation (4) to estimate H, i.e. 
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where k describes the iterative process. For a first estimate of ΦH the power spectrum is assumed to be 
constant. Henceforth in this paper the iterative computation will be used since it resulted according to 
simulations in more accurate PSF estimates. 

3.2. Maximum Likelihood  

The main idea of the maximum likelihood approach is to minimise the term g–f�h, i.e. 
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where g and f represent the weighted combination of multispectral bands  and the more highly resolved 
panchromatic band, respectively. The parameter ĥ  is an estimate of the actual point spread function h . 
The original iterative implementation of Equation (6) has the two main advantages of non-negativity with 
respect to the result as well as convergence and is described by 
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with the operator • indicating correlation. The underlying noise model incorporates the Poisson statistic 
and therefore is not ap propriate for the given problem. Hence, this paper suggests a modification of 
Equation (7) similar to the idea depicted by Pruksch and Fleischmann (Pruksch and Fleischmann, 1998) 
to include Gaussian statistics : 

( )vuH ,ˆ  



 

( ) .
ˆ

ˆˆ
1 













•
•=+

ffh

gfhh
k

kk

o

 (8) 

In case of noisy data a shortcoming is the noise am plifica tion, since the maximum likelihood algorithm 
tries – according to Equation (6) – to fit the data as closely as pos sible. One possible solution to avoid 
this undesired effect is the integration of a damping factor like it is often used in image restoration 
(White, 1994). However, for the particular case of estimating the PSF the utilisation of constraints on the 
intermediate estimates within every iteration leads to faster convergences and allows a more flexible 
approach to include additional a-priori knowledge about the imaging function. This paper utilised the two 
constraints that the PSF has finite extent and is point-s ymmetric, which is reasonable with respect to the 
design of most push-broom scanners.  

4. MOMS SCANNER AND DATA 

The German MOMS -02P (Modular Optoelectronic Multispectral Stereo-Scanner) is the technical 
continuation of MOMS -01 and MOMS -02 flown on board of the Russian space station MIR. The push-
broom camera consists of a threefold stereoscopic imaging system and a four band multispectral 
camera with nadir orientation. In this paper imagery obtained in mode C was analysed. The specific 
mode provides three multispectral bands acquired with two identical objectives having each a focal 
length of 220 mm and a more highly resolved panchromatic band using a telescope with a focal length 
of 660 mm. To attain sufficient swath, two coupled Fairchild CCD191 are used in the focal plane of the 
panchromatic optics while one CCD per band is used for the multispectral data, i.e. two CCD arrays are 
placed in the focal plane of each 220 mm objective to gain four individual bands in total from which only 
three bands are supported in mode C. The details for the four bands are shown in Table 1. Note that the 
values are given with respect to the PRIRODA mission using the MIR space station as platform with an 
inclination of 51.6°  and a mean o rbital altitude of 400 km. 

Mode Channel Pixels per line Swath Spectral 
coverage 

GSD 

2 3220 57.96 km 532 – 576 nm 18×18 m 

3 3220 57.96 km 645 – 677 nm 18×18 m Multispectral 
4 3220 57.96 km 772 – 815 nm 18×18 m 

Panchromati
c 

5 6000 36 km 512 – 765 nm 6×6 m  

Table 1: Selected performance parameters of the MOMS -02P camera in mode C 

The utilised scene for this paper was acquired on the 11th of December 1996 over East Australia and 
shows mainly agricultural land use with an urban settlement in the centre portion of the scene. Figure 1 
depicts two sub-scenes of the panchromatic and multispectral band C 3, respectively, and gives an 
insight in the imaging capacities. Note that the data is a level 1A product, i.e. no resampling of the 
original image was performed. 



  
(a) (b) 

Figure 1: Sub-images from a scene obtained by MOMS on the PRIRODA mission (contrast enhanced): 
(a) panchromatic band, (b) multispectral band C3 resampled to the same size as the panchromatic band  

An analysis of the panchromatic scene revealed artefacts in the first 22 columns, i.e. a strong 
discontinuity between the 22nd and 23rd column. However, the typical striping in panchromatic imagery 
due to the often used sepa rate readout of odd and even CCD pixel positions was not observed. Also no 
spectral discontinuities between the two different CCD sensors could be exposed. 

It was reported* that the relative locations of the eight CCD arrays with respect to each other might 
change due to the environmental influences, i.e. the shift amount can change from scene to scene due 
to physical changes of the centre plate during the mission (Berger and Kaufmann, 1994). This shift was 
taken into consideration by estimating the displacement (Fonseca and Manjunath, 1996) and 
subsequently resampling of the mage doublets with respect to the panchromatic band.  

According to Section 3 the panchromatic band of the shown MOMS scene in Figure 1 can be used as 
an estimate of the unblurred version of the less highly resolved data. However, one major requirement 
for a successful utilisation of the techniques is the spectral alignment between the lower resolved image 
and the corresponding more highly resolved version. Generally the different bands of a scanner are not 
spectrally aligned and therefore a weighted sum of the multispectral image set is used to approximate 
the spectral characteristic of the panchromatic scene. Let MSR

i be the resampled versions of the 
corresponding multispectral bands MSi – the calculation uses a Kaiser-weighted sinc interpolator and 
resamples with respect to the pixel centres of the more highly resolved data. Then the artificially created 
band PMS with 
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represents the panchromatic equivalent to the actual panchromatic band P at the lower spatial 
resolution but the same number of pixels. The vari ables K, ai, and bi describe the number of bands, a 
linear scaling factor, and a band -specific offset, respectively. To gain the ai and bi Equation (9) can be 
rewritten in matrix notation by ordering the N×M image pixels lexicographi cally according to their row 
and column indices. Furthermore PMS is replaced by the panchromatic data P to determine the best fit 
between the weighted multispectral and panchromatic data. 
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* MOMS user guide. http://www.nz.dlr.de/moms2p/ug/index.html 



Note that the problem is over -determined, i.e. D  is not squared and therefore the pseudo-inverse D# 
defined as 

 ( ) TT DDDD
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has to be used to solve for the parameters in Q, i.e. Q=D #P. The newly created image PM S is optimal in 
a least squares sense. The approach should only be used locally for sub-sections of the image to 
enable a flexible adaptation to the respective reflectance of the displayed ground cover. Consequently 
the PSF estimation takes place within the given region and should not overlap with other regions, which 
were generated using a different choice of parameters ai and bi. For an analysis on the introduced 
errors by using a linear combination of multispectral bands to simulate a panchromatic band refer to 
(Mascarenhas et al., 1991). 

5. RESULTS 

The comparison between the results of the different methods presented in Section 3 is made using the 
full-width-half-maximum (FWHM) values of the estimated imaging functions. For both iterative 
approaches the FWHM values were taken in the across-track and the along-track di rection. Since the 
estimated PSFs are slightly irregular in shape a least squares fitted ellipse was employed to avoid an 
undesired bias in the measurement. Several different sub-images were used for the estimation process 
to minimise the influence of local characteristics in the image bands and finally the different estimates 
averaged. The results are summarised in Table 2 whereby each estimation algorithm utilised one of the 
two previously mentioned constraints, i.e. compact support or point-symmetry. Note that the values in 
Table 2 are with re spect to the multispectral pixels of the used scene. 

The extent of the PSF estimated by the iterative Wiener filter is larger than the maximum likelihood 
estimate. The reason is that the Wiener filter itself has a low -pass characteristic. However, this is partly 
compensated by superimposing a finite extent on the intermediate results and thus introducing high 
frequency components. On the con trary the symmetry constraint broadens the PSF even further and 
does not limit the extent since earlier – presumable invalid – estimates in the outer skirt are never 
completely revised. The same argumentation regarding the constraints is applicable for the estimates 
using the maximum likelihood estimation. However, the differences are less significant. A first analysis 
(work in progress) between the two different iterative approaches led to the assumption that the results 
of the maximum likelihood estimator are more likely to describe the actual PSF. 

 Wiener Filter Maximum Likelihood 
 Extent Symmetry Extent Symmetry 

FWHMacross-

track 
2.63 2.85 2.51 2.63 

FWHMalong -track 2.97 3.07 2.66 2.74 

Table 2: FWHM values for the PSF estimates 

Further investigations using the proposed techniques have shown that the shape of the estimated PSF 
is nearly space invariant over the entire image plane. This would be expected for the along -track 
direction since MOMS is a push-broom scanner. The variation in the across-track direction is negligible 
due to the narrow instantaneous field of view. 

6. CONCLUSIONS  

A method for estimating the PSF of a remotely sensed image has been described, relying on the 
existence of an image doublet with different spatial resolution. The more highly resolved panchromatic 
image was used as an estimate of the unblurred multispectral image sets. The approach takes into 
account that the spectral information varies across the different bands but assumes in general a high 
correlation among corresponding image sections. Two different iterative techniques were depicted to 
compute the PSF estimate using the idea of Wiener filtering and maximum likelihood deconvolution, 
respectively.  

The main advantage of the proposed technique is that it allows an unsupervised computation of non-
radial sym metric PSFs. Therefore the differences of the PSF extent in the along -track and the across-
track direction are ob servable. The approach is solely based on some basic assumptions concerning 



the extent of the spatial frequencies beyond the less highly resolve image and the spectral 
characteristic. While the first constraint generally becomes less prevailing if the difference in spatial 
resolution between the doublets increases (Viallefont-Robinet and Henry, 2000), the latter one can only 
be partly compensated by approximating the spectral attributes using a weighted set of multispectral 
bands.  

The foremost drawback of the proposed algorithm is that only the PSF of the less highly resolved image 
set can be estimated. Furthermore no estimations for individual bands are possible as long as the 
doublets are not spectrally aligned. However, once the actual shape of the imaging function is 
computed the PSF can be approximated by a suitable model, which then can compensate for the 
difference between the bands, i.e. the wavelength dependent diffraction. Future work will consider the 
extrapolation of the PSF estimate to the panchromatic band. 
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