
STUDY ON MODELING MOBILE OBJECTS
IN DISTRIBUTED COMPUTING ENVIRONMENT

Rong XIE*

Prof. Ryosuke SHIBASAKI*

*Center for Spatial Information Science,
University of Tokyo

4-6-1 Komaba, Meguro -ku, Tokyo, 153-8508
Tel: (81)-3-5452-6417 Fax: (81)-3-5452-6414

E-mail: xierong@iis.u -tokyo.ac.jp, shiba@iis.u-tokyo.ac.jp
JAPAN

KEY WORDS: mobile objects, distributed computing, mobile agent, modeling and simulation

ABSTRACT:
Currently, large quantities of position-aware mobile objects, such as GPS, mobile phone, PDA, various
smart vehicles are merging in distributed environment and systems. The real world applications such
as Location -Based Services etc. are being developed in an ad hoc fashion. As a result, software
technologies that enable the management of positions of distributed mobile objects capable of very
large numbers and very frequent changes are in increasingly high demand. We introduce to mobile
agent technology for managing mobile objects in a distributed computing environment. The paper
firstly presents a framework of management of distributed mobile objects. A Hierarchical Location
Schema for the indexing of historic and current positions of distributed mobile objects among nodes is
put forward to locate node quickly. Time-stamped E-R model is put forwar d as the basis of data
handling to support the schema. Also, mobile agent computing model is proposed for real -time update,
load balancing and robust against network troubles. In the model, techniques of naming and
addressing are applied and designed. For the purpose of implementation of distributed query
processing, two kinds of mobile agents: collaborative agent and information agent are implemented.
Taking the examples of real-time tracking simulation and distributed query processing, the proposed
method and model are finally applied to demonstrate its effectiveness and robust for the design and
development of distributed system.

1. INTRODUCTION

Currently, large quantities of position-aware mobile objects, such as GPS, mobile phone, PDA, various
smart vehicles etc. are merging in distributed environment and systems. The real world applications for
mobile objects such as Location-based Services, dynamic micro simulation in traffic situations are
being developed in an ad hoc fashion. As a result, software technologies that enable the management
of positions of distributed mobile objects capable of very large numbers and very frequent changes are
in increasingly high demand. In our research, we introduce to mobile agent technology for managing
mobile objects in a distributed computing environment.

2. MANAGEMENT OF DISTRIBUTED MOBILE OBJECTS

2.1 Entity Types of Mobile Object

In the paper, we define mobile objects as real world entities moving over space, whose location
changes with time. The term of mobile objects is more general, having two meanings: moving objects
& mobile agent.

• Objects, such as vehicles, pedestrian, cellular phone user, change their locations
continuously, we use the term moving objects to refer to such entities.

• Mobility tied to network hardware, data and code on moving objects may be relocated among
different network nodes by mobile agent.

Besides, users with mobile terminals move in the coverage area of wireless networks, called mobile
users, use the moving objects data.

2.2 Introduction to Mobile Agent Technology

We meet very large number of distributed mobile objects and very frequently changes in position of
mobile objects. In order to support semi-“real time” service and computation, “current” information
should be saved; on th e other hand, in order to process various queries, “history” record is also
necessary to be kept. Therefore, access to data in geographical close areas will be more frequently,
and data are originally distributed over many nodes in the network. We suggest to managing mobile
objects in a distributed computing environment.

The motivations for distributed computing applications are mainly sharing of resources and information
over a computer network in a transparent way, and cooperative computing. Object-oriented distribution
schemes are widely applied in current research, such as C/S, Applet, and Servlet etc.; however, a
more powerful design paradigm for network computing is mobile agent technology, a natural successor
to the object-oriented paradigm. We are interested in it by the benefits of its providing for the creation
of distributed systems. Danny Lange [4] listed seven good reasons for mobile agent technology. Some
advantages of mobile agent related to our research are:

(1) To reduce the network load. It has the unique ability to transport itself from one system in a network
to another. Very large volumes of data could be processed in the local system rather than transferred
over the network. It also offers a solution to critical real-time systems.
(2) To provide load balancing. Multi agents are working together towards a common goal and
coordinate closely with each other. A specific larger task is easy and efficient to handle and
accomplish by the cooperation of multiple agents, without resorting to larger computers.
 (3) To be robust and fault-tolerant. The ability of mobile agent to react dynamically to unfavorable
situations and events makes it easier to build robust and fault-tolerant distributed systems.

2.3 Distributed Computing System Framework

We would like to put forward a framework based on Hierarchical Location Schema (HLS) as shown in
Figure 1. The location management is based on a hierarchical organization of the network into
domains . Domains divide the network into geographical, administrative or network-topological
coverage.

Within the distributed location management, a domain is represented by node. Moving objects can be
a kind of real-world agent, migrating among nodes in the network. Leaf node, modeled by time-
stamped E-R model, is responsible for keeping track of all moving objects located in its own domain.
Higher-level nodes contain location information about moving objects located at the levels of its sub-
tree. When user submits query request from him/her nearest node, inside this node, the agent
manager handles tasks locally or dispatches several mobile agents to the remote nodes to search for
information. After agents reach the destination, distributed or parallel processing will be handled at
local node. After tasks are finished, agents will return back to the original node, the result will present
to the user. The task of agent is supported by distributed query processing.

Error! No topic specified.

Figure 1 Distributed Computing Model for Mobile Objects Management

Such framework has several potential strengths, to make “real time” update, query and other services
feasible, to be robust against node and network troubles, and to make load balancing efficiently.

3. DISTRIBUTED COMPUTING MODEL

3.1 Time-stamped ER model

Time-stamped model recording “history” based on the event, represents the relationship among object,
event and node related in application, and time-stamped attributes record the evolution of their values.
All history or event data are stored in each leaf node.

Error! No topic specified.

Figure 2 Time-stamped E-R Model
Object table <object_id, object_name, characteristic1, characteristic2,…, characteristicn,
creation_time>
Event table <historical_age, object_id, x, y, z>

Node table <node_id, node_name, serviceCenter_x, serviceCenter_y, service_radius>

3.2 Mobile Agent Computing Model

Mobile agent computing model consist of two kinds of agent: agent manager and several slave agents.
(1) Agent Manager
Agent manager provides an execution environment for other slave agents. It provides the following
services:

• Creating, dispatching of slave agent or event-driven agent
• Transaction between agents, data
• Controlled access to local resources

Inside agent manager architecture, task module (including naming, addressing and query processing),
communication module, DB, status sets are included, which are established on mobile agent platform.
By the communication module, agents communicate with each other and environment. Tasks will be
solved by task module according to database, status sets and some intermediate results. If the local
module cannot solve the task, agent manager dispatches some mobile slave agents to migrate to
other platform to search for computing resources.

Error! No topic specified.

Figure 3 Mobile Agent Architecture

A global naming scheme and name service is needed for locating resources, specifying agent for
agent migration, and establishing inter -agent communication. A naming schem e defines a name-space
of contact address to identify each distributed shared agent. Typically, it defines each agent as a
pathname to an object handle, consisting of logically local ID and additional information for the
physically location service. A local ID is a global unique and is never reused after the agent is
destroyed. The additional location information is allocated by the name service after agent is registered
its new contact address. When mobile agent migrates among network, addressing is applied to locate
node position of agent. For complex systems, each mobile agent should register its name and current
location to the Name Server for each time it is created or migrated from one node to another.

Error! No topic specified.

Figure 4 Addressing

(2) Slave Agent
When a mobile agent is preparing for a trip, it must be able to identify its destination. Once the location
of the destination is established, the mobile agent informs the local system that it wants to transfer
itself to the destination system. When the system receives the request of trip, it will do suspending the
execution of agent, keeping current data and status, defining the new destination node and then
dispatching agent with its data and status. When agent arrives at the destination, the data and status
will be recovered to resume execution in new node.

Error! No topic specified.

3.3 Distributed Querying Processing

Location queries in distributed systems are quite different from queries in traditional remote querying. It
assigns the task to mobile agent(s), which will migrate among nodes to search for resources to solve
the task. For the implementation of distributed querying processing, two methods are designed as
follows.

(1) Information agent

1: public class AgentMigration extends Aglet {
2: String coor_x, coor_y;
3: public void onCreation(Object args) {
4: if (args!=null){
5: coor_x=(String)((Object[])args)[0];
6: coor_y=(String)((Object[])args)[1];
7: }
8: addMobilityListener(new MobilityAdapter() {
9: public void onArrival(MobilityEvent ev) {
10: doTask();
11: }
12: });
13: }
14: public void dispatchSlave(String dest, int x, int y) {
15: Object args[]=new Object[]{String.valueOf(x), String.valueOf(y)};
16: try {
17: AgletContext context = getAgletContext();
18: NodeDetermine(); // which node to dispatch
19: AgletProxy proxy = context.createAglet(getCodeBase(), "Slave", args);
20: URL url = new URL(dest);
21: proxy.dispatch(url);
22: } catch (Exception ex) { ex.printStackTrace(); }
23: }
24:} // end of class AgentMigration

Figure 6 The Agent Migration Class

Information agent migrates between distributed information sources to perform the tasks of managing,
manipulating or collecting information from many distributed sources.

Error! No topic specified.
Figure 7 Information Agent Pattern

(2) Collaborative agent
Many heavy tasks may not be accomplished by one single object’s work. In order to reach load
balancing, mobility and messaging play important roles in the collaboration. The collaboration between
the participants in the Master-Slave pattern is as follows:

• A master agent creates a slave agent.
• The slave agent moves to a remote host and performs its task.
• The slave agent returns with the result of the task to the master

aS lave
(Hos t A)

aS lave
(H o s t B)

c rea teAgent () ini t ial izeTask()

d i spa tch ing("hos t B")

getResult()
d i spose ()

doTask()

dispatch("host A")

aMaste r
(Hos t A)

 Figure 9 Collaborative Agent Pattern

4. Simulation Results

(1) Real -time Tracking Simulation Among Nodes
Moving object can travel in its existed environment. It is autonomous to travel from one node to
another as a kind of mobile agent. Once created in one execution environment, the agent transports
with its state, data to another execution environment in the network, where it resumes execution. To
tracking the whole trajectory of moving object, (1) calculating coordinate boundary; (2) if exceeding
boundary, determining the new location of destination node; (3) dispatching itself to the new node; (4)
when arriving at the new node, resume its transport. Figure 10 shows trajectory simulation of tracking
a moving object transporting between two nodes.

1: public class InformationAgent extends Aglet {
2: boolean _the Remote=false;
3: public void onCreation (Object init) {
4: addMobilityListener (new MobilityListener () {
5: public void onDispatching (MobilityEvent e) {
6: // Print to the console…
7: }
8: public void onArrival (MobilityEvent e) {
9: _theRemote=true;
10: // Print to the console…
11: }}
12:);
13: }
14: public void run (){
15: if (!_theRemote) {
16: // The original aglet runs here
17: try {
18: URL destination=new URL((String)getAgletContext().getProperty(“location”);
19: dispatch(destination);
20: } catch (Exception e) { System.out.println (e.getMessage()); }
21: } else {
22: // The remote aglet runs here…
23: }
24: }
25: }

Figure 8 The Information Agent Class

1: public abstract class Master {
2: AgletProxy proxy=getAgletContext().createAgle t(

getCodeBase (),"Slave", null);
3: proxy=proxy.dispatch (destination);
4: } // end of class Master
5:
6: public abstract class Slave {
7: object result=null;
8: public void onCreation (Object args) {
9: // called when the slave is created.
10: // gets the remote destination
11: }
12: public void run (){
13: // at the origin;
14: initializeTask();
15: dispatch (destination); // goes to de stination
16: // at the remote destination
17: doTask (); // Stats on the task
18: result=…;
19: // returns to the origin
20: // back at the origin
21: // deliv ers the result to the master and dies
22: dispose ();
23: }
24: } // end of class Slave

Figure 10 The Collaborative Agent Class

0

50

100

150

200

250

300

0 100 200 300 400 500

Series1

 (a) Tracking Data (b) Tracking

Simulation on two nodes

Figure 11 Example – Real -time Tracking Simulation Among Nodes

(2) Distributed Query Processing
Considering a database representing information about moving objects and their position. (1) Creating
several collaboration agents to dispatch to the remote nodes; (2) handling query operation at local
node after agent arrives at the local node; (3) After agents come back, results are collected and
simulated. Figure 11 shows simulation by the querying result of trajectory information of moving
objects.

node2 node3

node1
slave1

master
agent

node4 node5

slave2
slave3

slave4

query request window

query result window

(a) Distributed Query Processing

(b) Tracking Simulation Result on Node 1

Figure 12 Example – Distributed Query Processing

5. CONCLUSIONS AND FUTURE WORK

In this paper, we discuss managing mobile objects in a distributed computing environment and the
application of mobile agent technology to mobile objects simulation. Our preliminary work shows that

the integration of Hierarchical Location Schema, time-stamped ER model, mobile agent computing
model in distributed data management is feasible. Agent-based system is inherently distributed, and
agent technology can reduce network load, provide load balancing and make distributed systems
robust and fault-tolerant. So mobile-agent technology could be a powerful, uniform paradigm for the
design and development of distributed systems.

Further research includes developing an event-based micro-simulation to represent behavior of mobile
objects when mobile objects interact with each other and with environment. Agent-based behavior
model will also facilitate the research with strategies of time synchronization, resource allocation and
mutual exclusion by application of mobile agent technology.

REFERENCES

[1] Aline Baggio, Gerco Ballintijn etc., 2001. Efficient Tracking of Mobile Objects in Globe. The
Computer Journal, 44(5), pp340-353
[2] Evaggelia Pitoura, George Samaras, 2001. Locating Objects in Mobile Computing. IEEE
Transactions on Knowledge and Data Engineering, 13(4), pp571-592
[3] S. Spaccapietra, C. Parent, E.Zimanyi, 1998. Modeling Time from a Conceptual Perspective,
http://lbdwww.epfl.ch/e/publications/articles.pdf/CIKM98.pdf
[4] Danny B. Lange, Mitsuru Oshima, 1998. Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, 2000
[5] Chong Xu, Dongbin Tao. Building Distributed Application with Aglet.
http://www.cs.duke.edu/~chong/aglet
[6] Jim Farley. Java Distributed Computing. O’Reilly & Associates Inc., 1998

