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ABSTRACT  
 
This paper extends the suggestion by Bruce (2000), that image classification accuracy can be increased 
by the addition of co-registered synthetic aperture radar (SAR) imagery to visible and near infrared 
(VNIR) imagery. The paper examines the increase in classification accuracy through the addition of C, L 
and P band SAR to Landsat TM7 VNIR imagery. The multi-spectral SAR is further extended through 
multi-polarization backscatter measured in the TOPSAR mode of the JPL AIRSAR instrument flown in 
PACRIM 2000. The test site for the study, which is located east of Adelaide in South Australia, features 
rolling topography with land use ranging from horticulture, viticulture, pasture, crops and irrigated 
agriculture through to native forestry. The 2000 AIRSAR data capture occurred at a 5m spatial resolution 
providing a DTM (from C band interferometry) and polarmetric imagery in L and P bands (VV, HH and 
HV) and VV polarization imagery at C band. Using detailed land use maps and additional field data as 
ground truth, a supervised classification of each of the image types was conducted and classification 
accuracy computed. The VNIR component of the ETM+ imagery was merged with the higher resolution 
ETM+ panchromatic imagery to produce imagery of 12.5m spatial resolution. The TOPSAR image, after 
geometric and radiometric calibration, was classified using the same training areas as for the VNIR 
imagery. TPOSAR data was then resampled to 12.5m and merged with Landsat ETM+ imagery. The 
merged imagery was classified using the same training areas as utilized for the earlier classifications. 
Classifications of VNIR together with C and L band and then with P band imagery proceeded. 
Classification accuracies were computed for all images and combinations. Results showed significant 
improvement in classification accuracy when C and L band wavelengths were processed together with 
VNIR. The addition of P band, whilst improving the classification accuracy, did not do so significantly. 
 
BACKGROUND 
 
Bruce (2000) has demonstrated the potential for improved vegetation discrimination from the 
combination of Landsat TM5 VNIR imagery with JERS L band SAR imagery. In this work vegetation 
discrimination improved as a result of the detection of object structural properties via backscatter at L 
band (23cm wavelength) with HH polarization. The vegetation focused upon was that of grape vines 
which were grown upon wood and wire trellises the support structures of which provided double bounce 
return to the SAR antenna. When combined with the spectral reflectance in the visible and near infrared 
part of the electromagnetic spectrum this scattering enabled discrimination between irrigated summer 
crops / pastures and grape vines. The objective in this prior research, which was to increase the 
classification accuracy for mapping grape vines from satellite image data, was achieved. There was no 
attempt to increase the number of classified objects beyond the class of grape vines and other objects. 
However, the work inferred that the classification accuracy of other classes of objects could be improved. 
 
The opportunity to test the hypothesis that the combination of VNIR and SAR can improve object 
classification accuracy came as a result of the PACRIM 2 AIRSAR mission. This airborne SAR, built and 
operated by JPL and NASA visited many sites across and around the Pacific Rim during 2000 (see 
http://airsar.jpl.nasa.gov/cgi-bin/internet.plex?year=2000&uid= ) The AIRASR aircraft was based in 
Adelaide, South Australia for many of the southern Australian sites and acquired imagery over several 
test sites in the Mount Lofty Ranges, near Adelaide, in August 2000. VNIR imagery of the same area was 
available from Landsat earlier in 2000 and thus an opportunity to advance the classification of fused 



imagery existed. A simultaneous acquisition of hyperspectral MASTER data with the TOPSAR data 
proved unsuccessful due to poor weather conditions. 
 
 
RESEARCH OBJECTIVES 
 
In order to test the hypothesis declared above a test site with known ground truth was required. Such a 
site was available from previous work (Bruce et al, 1999) and was located in the central Mount Lofty 
Ranges east of Adelaide, the capital city of South Australia (see Figure 1). Part of the site had been 
imaged in 1993 by the AIRSAR sensor with the focus of that research being in the area of soil moisture 
and soil degradation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Study site (red rectangle) in the central Mount Lofty Ranges east of Adelaide, South Australia. 
Background image from Landsat ETM+ with bands 1,4,5 mapped to B,G,R (Summer 2000 data capture).  

Inset map shows location of site (red diamond) with respect to Australia and Asia. 
 

Image acquisition in the 2000 AIRSAR flight over the Mount Lofty Ranges produced data in TOPSAR 
mode. In this product C band (5.6cm wavelength) HH and HV are used in interferometric SAR (IFSAR) 
production of a Digital Surface Model (DSM), leaving C band VV, L band (23cm wavelength) HH, VV and 
HV, and P band (68cm wavelength) HH, VV and HV for the bands constituting the TOPSAR imagery. 
This imagery is corrected to ground range and adjusted for topographic effects via the use of the 
coincident DSM from IFSAR. The acquisition occurred in the winter months of 2000 when the ground had 
high moisture content from winter rains.  Summer 2000 imagery (VNIR, Panchromatic and Thermal) from 
ETM+ aboard Landsat was acquired and exposed strong differences between irrigated crops, pastures, 
native woodland, dry vegetation and bare soil (see Figure 1). 
 
The research objective was to perform spectral classifications on each of the VNIR, TOPSAR and the 
combination of VNIR and TOPSAR image data. Ground truth was to be used for establishing training 
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data for supervised classification and additional ground truth used for creating accuracy assessments of 
all products. 
 
METHODOLOGY 
 
Radiometric adjustment of the VNIR image preceded the geometric correction to a common ground 
coordinate system. This radiometric adjustment included BDRF modelling using sun geometry and a 
30m DEM, previously derived from topographic contour data. The DSM from TOPSAR was not used at 
this juncture as the model corresponded to the top of ground (where exposed) and either the top or near 
the top of vertical features such buildings and trees. Further processing of the DSM to produce a DEM is 
required. The image was then pan-sharpened using the higher spatial resolution panchromatic imagery 
simultaneously acquired with the VNIR data and resampled to 12.5m ground resolution. Geometric 
rectification was originally carried out to 1:50,000 digital map data using 85 ground control points (for the 
whole Landsat image) and a first order polynomial with total RMS of 16m. 
 
The TOPSAR data was supplied in radiometrically calibrated dB using JPL pre and post flight calibration. 
Whilst the image data had already been corrected to ground range and for topographic geometry effects, 
the imagery still had to be adjusted to the common coordinate systems as that of the VNIR data. Again 
this was achieved using 1:50,000 digital map data using 39 Ground Control points with a total RMS of 
13.1m. The major error in this rectification was the accuracy of the 1:50.000 maps. To improve this error 
new orthometric colour aerial imagery at 1.75m spatial resolution has been acquired and the geometric 
correction for both the VNIR and the TOPSAR imagery will be redone. Because the intention in this 
research was to merge the VNIR data with the TOPSAR data, the image rectification is a critical step. 
Errors of miss-registration may well produce distortions (particularly near the edge of objects) which may 
lead to errors in classification. 
 
The spatial resolution of the two main images types used in this research are considerably different being 
approximately 30m and 5m for the ETM+ VNIR and TOPSAR data respectively. In order to make these 
two resolutions more compatible the ETM+ VNIR image was pan-sharpened using two methods; PCA 
forward-reverse resolution sharpening (ERDAS, 1999 and Chavez, 1991) and Smoothing Filter-based 
Intensity Modulation (SFIM) (Liu, 2000). The latter of these techniques proved to be superior in 
maintaining the spectral qualities of the VNIR image than the former. The original image data was 
supplied from the Australian Centre for Remote  Sensing with 25m and 12.5m pixel resolutions for the 
VNIR and the panchromatic imagery respectively. Thus the pan-sharpened imagery was output at 12.5m 
spatial resolution with 6 multispectral bands.  In re-sampling the 5mTOPSAR data to the common 
coordinate system, two images were output at 5m and 12.5m pixel resolutions. Both were subsequently 
used together with the 12.5 pan-sharpened VNIR imagery for combined classification processing. 
 
Prior to classification the TOPSAR data was de-speckled used a Lee-sigma filter with a coefficient of 
variation computed for the image of 0.113, which compares well with the typical values expected from 16 
look SAR. Figure 2 shows the VNIR and TOPSAR images prior to classification. Of note are the rural 
townships (A) in the south-west corner of the images showing strong blue tones in the VNIR image and 
strong backscatter in all three radar wavelengths. Native forests / woodland (B) exhibit lower infrared 
reflectance than that of irrigated crops and pastures but provide strong double or multiple bounce returns 
in all three radar wavelengths. 
 
Ground truth for both the supervised classification and accuracy assessment was obtained from a 
combination of field visits over 6 month period from prior to the Landsat overpass to after the AIRSAR 
flight, land use polygon GIS data from the local Primary Industries and Resources (PIRSA) department 
and interpretation of the orthophoto imagery which was flown in March 2000. Supervised classification of 
both the VNIR and the TOPSAR data was performed using the Gaussian Maximum Likelihood (GML) 
algorithm. The use of this algorithm for radar is debatable and thus analysis of the normality of the SAR 
training data was performed. Because AIRSAR is acquired with 16 looks and with radar speckle 
predominantly removed, the training data showed strong tendency towards normality. For each 
information class multiple training samples were collected to ensure that the full spectral diversity of 
classes was collected.  The same training sites were used for all three images and corresponded to the 
information classes shown in Table 1. This table also provides comments concerning spectral reflectance 
in VNIR and backscatter for the three radar wavelengths.  
 
Consideration of the comments provided in Table 1 shows that there are likely to be errors of 
commission in a number of information classes for a single image type. For example, in the VNIR image 



the spectral mixtures of grape vines with soil and shadow will most probably overlap with native trees 
along the edge of rural roads where again there is spectral mixing from the leaves of the eucalyptus and 
acacia trees with dry grass, soil and gravel roads. This confusion can be potentially resolved when 
examination to the radar backscatter of these information classes is considered. The posts in the 
vineyard trellis system potentially provide lower backscatter than that from larger tree trunks, particularly 
at L and P bands. Similarly, the irrigated pasture with strong infrared reflectance in the VNIR image 
potentially can overlap with vines when secondary plants are grown between the vine trellis systems. 
Again the SAR image potentially can resolve this situation with lower backscatter from the relatively 
smooth pasture surface, particularly at L and P band.   
 
Following classification all thematic classification layers were thresholded using � 2 distribution developed 
from the posterior probabilities derived in the GML classification algorithm. After inspecting the � 2 
distributions of all  
 
Information Class VNIR Reflectance comments SAR backscatter comments 
Native woodland 
and forest 

Characteristic vegetation response, 
but with lower IR reflectance than 
for crops and irrigated pasture. 

Strong backscatter from tree trunks in all 
wavelengths. Some volume scattering 
from upper story branches and leaves at C 
Band HV. Some P band penetration to 
forest floor. 

Irrigated grass 
pasture 

Strong IR reflectance and red 
absorption.  

Low response in all bands with response 
decreasing with increase in wavelength. 
No separability from dry pasture. 

Buildings  Response strongest in the shorter 
wavelength bands, particularly 
visible blue. Weak reflectance in 
infrared. 

Strong backscatter at all wavelengths with 
double bounce off vertical building sides. 
Similar to some backscatter from  tress. 

Conifers and pines Similar reflectance to native 
woodland, but darker in most bands 
due to tree density and shadows. 

Similar response to native vegetation. 
However the cross-polarized return is 
different to that of native vegetation, 
probably due to differing branch patterns. 

Dry grass pasture 
with some exposed 
soil 

Bright reflectance at all wavelengths 
with strongest values in middle 
infrared (soil) 

Low response in all bands with response 
decreasing with increase in wavelength. 
Poor separability from irrigated pasture. 

Quarry (open cut)  Very strong reflectance from 
exposed rocks and soil. 

Bright return from quarry sides facing 
radar. Considerable radar shadow in other 
places. 

Grape vines  Green vine leaves, soil between the 
vine rows and shadow make this 
reflectance a genuine mixture. 
Confusion exists between this class 
and native trees scattered along 
road edges. 

The dominant backscatter is from the 
wooden posts and, when close to parallel 
with radar antenna, the wire supports for 
the vines. Backscatter decreases with 
wavelength. 

Dam water A poor reflector with decreasing 
response with wavelength. Edge 
pixels show strong mixing. 

A smooth surface generating a very low 
backscatter at all wavelengths. 

 



Table 1: Information classes used for land cover classification. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Left -  TOPSAR image after geometric rectification and de-speckling (R,G,B -  Pvv, Lvv, Cvv) 
Right – VNIR image after pan-sharpening (SFIM) and rectification (R,G,B – 5,3,1) 

 
classes, the��2 distance was set to correspond to a 1% rejection. Accuracy checks followed via the use of 
stratified random sampling using 160 checkpoints, using points wherein the selected raster cell was one 
of a majority in a 3 x 3 neighbourhood. The stratified random selection was constrained to a minimum of 
10 checkpoints per information class. Kappa statistics and accuracy percentages were computed as a 
total and for each information class. 
 
IMAGE FUSION 
 
In the fusion of the VNIR and SAR images consideration was given to the radically different data types 
with the original VNIR data being integer DN from 0 - 255 and the SAR data being floating point decibels 
from +51 dB to – 332 dB. In order to ensure that the data ranges of the two images were more 
compatible prior to fusion, each data value was transformed to one representing its distance from the 
band mean in terms of the standard deviation of that band. That is: 
 
 DVi

T = (G�i – DVi) / G�I  
………………………………………………………………………………….(1) 
 

Where, DVi
T = transformed data value in band i, DVi = existing data value in band i, G� i  = global 

mean for band i��G�i = global standard deviation for band i. 
Following this transformation the two images were simply combined into one image with 13 layers; layers 
1 – 6 for the VNIR bands and layers 7 – 13 for the C, L and P bands. Figure 3 illustrates the 
improvement in image detail via the combination of near infrared (VNIR band 4) with the Cvv and Lvv 
bands from TOPSAR. Note the additional detail in the township (T) where tress and buildings are better 
discriminated and the additional details in the irrigated pasture (P) and vines (V). 
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Figure 3: Comparison of enlarged images showing detail around a rural town (Woodside) 
Left – Bands 1,4,5 (B,G,R) for VNIR image. Right – Cvv , VNIR band 4, Lvv (B,G.R) for the combined 

images. 
 

RESULTS 
 
 Kappa Statistics 

Information Class 
VNIR             

(all bands) 
TOPSAR       

(all bands) 
VNIR + TOPSAR      
C and L bands 

VNIR + TOPSAR  
(all bands) 

Native woodland and forest 0.4286 0.6491 0.7932 1.0000 
Irrigated grass pasture 0.4359 0.2958 0.8089 0.8747 
Buildings  1.0000 0.2982 0.4763 0.4063 
Conifers and pines       -0.0256 0.2564 0.2994 0.3846 
Dry grass pasture / exposed soil 0.4667 0.8148 0.8597 1.0000 
Quarry (open cut) 0.0127 0.1007 0.0895           -0.0127 
Grape vines  0.1903 0.0789 0.2776 0.2870 
Dam water 0.7621 1.0000 0.7995 0.8222 
Overall Kappa Statistic  0.2724 0.3961 0.5627 0.6181 
Overall Classification 
accuracy % 

42.50 61.25 67.19 70.00 

Table 2: Accuracy statistics for the classification of VNIR, TOPSAR and combinations of VNIR and 
TOPSAR 

 
Table 2 summarizes the accuracy statistics for various images and combinations of images / bands. The 
overall accuracy statistics are relatively low compared with typically published values, but represent the 
realistic accuracies when genuine random accuracy assessment is undertaken. The lower than expected 
overall accuracies are possibly also in part due to registration errors between the two images. On a 
number of samples test points near the edge of features such as forests, errors were noted due to mixing 
of slightly miss-registered images. The kappa statistics for the individual classes showed a serious 
problem with the quarry class and less than the expected quality for the Grape Vine class, given the 
success reported by Bruce (2000). Visual comparison of the classifications from the VNIR and the 
combined VNIR and TOPSAR with each other and with land use maps indicated better results than 
Table 2 suggests. An example of this comparison is illustrated in Figure 4, which presents an 
enlargement of a section in the east of the study site with a small town (Charleston), grape vines, 
irrigated pastures and some native forest classes. In Figure 4 left there are strong indications of over 
classification of vines when compared with the vector land use map (Figure 4, centre). There is an 
improvement in this class in Figure 4 (right).  
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Figure 4: Comparison of classifications showing detail around a rural town (Charleston)  

Left – Classified VNIR image. Centre – Vector land us map. Right – Classified combination of VNIR and 
TOPSAR images (all bands).  

 
Table 2 demonstrates that classification accuracy generally improves with the addition of SAR imagery to 
VNIR imagery, with the most useful contributions from C and L band with P band having less influence 
on the classification accuracies. This can be attributed to P band exhibiting a considerably lower dynamic 
range than C and L bands for the AIRSAR instrument and because at the 68cm wavelength of P band, 
there will be penetration though crops, and forest canopies. It was expected that P band would contribute 
more significantly to the differentiation of buildings from trees, but this was less successful than 
anticipated. 
 
CONCLUSIONS 
 
The preliminary research reported in this paper supports the hypothesis that improvement in 
classification accuracy can occur when VNIR imagery is combined with multi-spectral SAR imagery. 
Significant issues exist with the combination of these types of data with image geometry and accurate 
co-registration being very important. The different spatial resolutions of the two data sets used in this 
paper also provided challenges, which were not completely resolved. Alternative classification algorithms 
such as image segmentation and rule-based classification may well improve the levels of accuracy. The 
paper provides sufficient impetus for the continued examination of the combination of satellite VNIR 
images with satellite SAR images, particularly with the advent of EVNISAT ASAR with dual polarization 
at C band and, in the future, ALOS PALSAR with quad polarization at L band. 
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