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ABSTRACT In this paper, we present the development and application of two algorithms useful 
for combining a set of undersampled, lower resolution remotely sensed images in a super-
resolution product. The first method, called SRVPLR, is based on the Variable-Pixel Linear 
Reconstruction method (Drizzle) which is a method well known in Astronomy for the 
combination of undersampled images obtained with the Hubble Space Telescope and other 
instruments, but has never been used in Remote Sensing for image super-resolution. The second 
method, called SRASW, is a completely new method based on the image fusion scheme using the 
multiresolution wavelet decomposition. Both methods preserve photometry, can weight input 
images according the statistical significance of each pixel, and remove the effect of geometric 
distortion on both image shape and photometry. We present the development of both methods for 
Remote Sensing and a first application to: 1) a set of simulated multispectral images of the 
QuickBird satellite (starting from a real Quickbird image of Madrid) and 2) a set of multispectral 
real images of Barcelona area obtained by the Landsat ETM+ satellite. The results show that we 
obtained a high degree of super-resolution (about a factor of 2) for both simulated and real data 
without altering the multispectral content of the original images or amplifying the noise.  
 
1. INTRODUCTION 
 
In remote sensing, as in many other fields, the spatial resolution of the image is key parameter. 
Thus, the increment of resolution is a need for many civilian and military applications. One way 
of obtaining higher resolution images is by increasing the focal length of the satellite-based 
observing cameras. However, this implies larger, better-stabilized and much more expensive 
platforms. Another way is to increment the number of pixels of the detectors by reducing its size. 
This is technically difficult, decrease the amount of collected light by each pixel and increase the 
shot and readout noise at the detector. Another way to is to apply digital techniques to combine a 
set of low resolution images (LR) to obtain a super-resolution (HR) result (Park et al., 2003).  
 
A complete super-resolution method should include three steps: 1) Corregister all the LR images 
of the set; 2) Interpolate and/or combine the LR images over a HR image and 3) Restore the HR 
image from noise and PSF convolution . The schedule of a super-resolution method is as follows: 
 

 
Figure 1: Super-Resolution scheme. 
 
The aim of this paper is to contribute in the second step by the development of two algorithms for 
the optimal combination of LR undersampled images in a super-resolution result. 
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2. SRVPLR  
 
Fruchter and Hook (2001) developed the Super-Resolution Variable-Pixel Linear Reconstruction 
method (SRVPLR or Drizzle) for the linear reconstruction of an image from a set of 
undersampled, dithered lower resolution images. This method is well known in Astronomy for 
the combination of undersampled images obtained with the Hubble Space Telescope and other 
astronomical instruments, but it has never used for Remote Sensing super-resolution. The 
SRVPLR method preserves photometry, can weight input images according the statistical 
significance of each pixel, and removes the effect of geometric distortion on both image shape 
and photometry. The method (see Figure 2) works as follows: once performed the registering 
process (and histogram matching if needed), obtaining a bi-cubic polynomial, which takes into 
account translation, rotation and geometric distortion, the method projects, and add each LR 
image over a HR grid. The key of the method is that during this process, to avoid convolving 
again the resulting image with the original pixel, the pixels of the LR image are condensed in a 
“drop” of smaller size. The drops then “rain” over the HR image adding its value to the HR pixels 
with a weight proportional to the intersecting area between the drop and the HR pixels.  
 

 
Figure 2: Graphical description of SRVPLR 
 
Analytically, the method works as follows. Let (xi,yi)  a LR input pixel with value dxi1yi1 and user 
defined weight wxi1yi1. Let (xo,yo) an output HR pixel with value Ixoyo and weight Wxoyo. Let 
axiyixoyo (≤1) the intersecting area between the condensation drop of (xi,yi) and the pixel (xo,yo).  
The resulting intensity of the output pixel I’xoyo and its new weight W’xoyo are: 
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where s is the scaling factor between HR and LR and is introduced to keep the surface intensity. 
The relative size of the drop side respect the input pixel is given by parameter p (pixfrac). After 
processing all input images, the HR image intensities and weights are:   
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where almost all intersecting areas axiyixoyo are zero because an input pixel affects few output 
pixels. The algorithm is applied pixel by pixel for all input images to combine giving a HR image 
which contains the useful information and weight map of all input images.  
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3. SRASW 
 
The Super Resolution Additive/Substitutive Wavelet-based method (SRASW) is a completely 
new method based on the image fusion scheme using the multiresolution wavelet decomposition 
(Núñez et al, 1999a, 1999b). The main idea of the method is: a) Corregister and expand all the 
LR images to a finer grid. b) Decompose all LR input images in wavelet planes. c) Add over one 
of the images the first wavelet planes (usually one) of the others. Since the detail information of 
the image is located in the first wavelet planes, it is fused and included in the resulting image.  
 
In summary, the image wavelet decomposition method is based on the decomposition of the 
image into multiple channels based on their local frequency content. The wavelet transform 
provides a framework to decompose images into a number of new images, each one of them with 
a different degree of resolution. While the Fourier transform gives an idea of the frequency 
content in our image, the wavelet representation is an intermediate representation between the 
Fourier and the spatial representation, and it can provide good localization in both frequency and 
space domains. We skip here details about the wavelet decomposition theory. For more details, 
see, for example, Daubechies (1992), Núñez et al (1999a) and references therein.    
 
To obtain shift-invariant discrete wavelet decomposition for images, we follow Starck and 
Murtagh (1994), and use the discrete wavelet transform known as “à trous” ("with holes") 
algorithm to decompose the image into wavelet planes. Given an image P we construct the 
sequence of approximations: F1(P) = P1; F2(P1) = P2; F3(P2) = P3 ..... To construct the sequence, 
this algorithm performs successive convolutions with a filter obtained from an auxiliary function 
named scaling function. We use a scaling function, which has a B3 cubic spline profile. The use 
of a B3 cubic spline leads to a convolution with a mask of 5x5: 
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The wavelet planes are computed as the differences between two consecutive approximations of 
the image Pm-1 and Pm. Letting Wm = Pm-1 - Pm (m=1...n) in which P0 = P we can write the 
reconstruction formula: 
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In this representation, the images Pm (m=1...n) are versions of the original Pm at increasing scales 
(decreasing resolution levels), Wm (m=1...n) are the multiresolution wavelet planes and Pr is a 
residual image, which contains all the energy of the image since the wavelet planes have zero 
mean.  In our case, we are using a dyadic decomposition scheme. Thus, the original image P0 has 
double resolution than P1, the image P1 double resolution than P2 and so on. If the resolution of 
image P0 is, for example, 10 m, the resolution of P1 would be 20 m, the resolution of P2 would be 
40m etc. Note, however, that all the consecutive approximations (and wavelet planes) in this 
process have the same number of pixels as the original image.  
 
The implementation of the SRASW is as follows: 1) Register all LR images (and perform 
histogram matching if needed) as in previous method obtaining a bi-cubic polynomial for each 
LR. 2) Expand each LR image to the final HR grid. In this step, we use the SRVPLR method to 
project each LR image onto an empty grid, using a convenient drop size (pixfrac). 3) Decompose 
all expanded LR images in wavelet planes as described above. 4) Choose one of the expanded LR 



 25th ACRS 2004  Chiang Mai, Thailand 265 
 

   Data Processing  B-2.9 

 
 
 
 
 

 

 

images as reference (usually the same used as reference for the registering process). 5) Add all 
the detail information contained in the expanded LR images on the reference image. This is 
performed by substituting the first wavelet plane of the reference image by the mean of the first 
wavelet plane of all expanded LR. 6) Reconstruct the resulting image using the reconstruction 
formula. This is the HR result of the SRASW method which contains the energy of the reference 
image and includes all the combined detail information of all LR images in a finer grid. 
 
4. EXAMPLES 
 
4.1 Simulated Quickbird data 
 
The first example presented is using simulated QuickBird satellite data. We performed such 
simulation to have a “true” HR image to compare the super-resolution results. To simulate the 
data we used a real 2.4m pixel RGB multispectral QuickBird image of  Madrid. Using this image, 
we generate 9 simulated RGB images of 4.8m pixelsize. This was performed by rotating the 
original 2.4m pixel image in steps of 20 degrees and degrading it to the new pixelsize of 4.8m. To 
minimize neighbor pixel contamination in this step (and simulate a true 4.8m sensor as much as 
possible) we first expanded the original image, using SRVPLR, to a fine 0.6m pixel grid and then 
degrade it to 4.8m by integrating the finer pixels. We applied SRVPLR and SRASW to combine 
the 9 4.8m pixel images in a 2.4m pixel Super-Resolution result.  Figure 3 shows the results.  
 

    
 

    
Figure 3:  Results of appling SRVPLR and SRASW to a set of simulated  QuickBird  images. 
From left to right: a) One of the 9 input 4.8m pixel LR images. b) SRVPLR 2.4m pixel result.    

c) SRASW 2.4m pixel result and d) Original 2.4m true image. 
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Figure 3 show the high degree of Super-resolution obtained using both methods. Although it is 
not possible to recover the 2.4m resolution of the original image, the results show a obtained 
resolution much closer to the 2.4m original than to the 4.8m of the input images. Also, both 
methods preserve very well the multispectral characteristics of the original image with 
correlations of 0.99 in each R,G,B bands between the results and the original image. 
 
4.2 Real Landsat ETM+ data 
 
For the second example, we used 9 real RGB multispectral Landsat ETM+ images of Barcelona. 
The 30m pixel RGB images were obtained along 2 years at different epoch of the year. Thus, 
Seasonal and temporal effects are high. We register the images using 60 control points and 
applied SRVPLR and SRASW to combine the nine 30m pixel RGB images in a 15m pixel Super-
Resolution RGB result. Since in this case we do not have an original image, we use the 15m PAN 
image of one of them to check the obtained super-resolution degree. Figure 4 shows the results. 
 

    
 

    
 

    
Figure 4:  Results of appling SRVPLR and SRASW to a set of 9 real Landsat ETM+ images. 
From left to right: a) One of the 9 input 30m pixel LR images. b) SRVPLR 15m pixel result.   
c) SRASW 15m pixel result and d) PAN image of 15m pixel corresponding to the left image. 
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Again, Figure 4 show the high degree of Super-resolution obtained using both methods. The 
recovered details of the harbor or of the streets show that we obtained a resolution closer to the 
15m PAN image than to the 30m of the input images while preserving very well the multispectral 
characteristics of the input RGB images. In fact, since the SRVPLR and SRASW results are 
multispectral, in is possible to see in the resulting images in some places more detail than in the 
15m Panchromatic image. This is particularly remarkable taking into account that, as mentioned, 
the input images suffer of seasonal and strong temporal effects.  
 
5. CONCLUSIONS  
 
We have designed, and applied to Remote Sensing, two new algorithms to obtain Super-
Resolution by combining a set of undersampled low resolution images. One of the algorithms, the 
Variable-Pixel Linear Reconstruction method (SRVPLR), is common in astronomical image 
processing but never applied in Remote Sensing for image super-resolution. The second method, 
(SRASW), is a completely new method based on the multiresolution wavelet decomposition 
image fusion. Both methods remove the effect of geometric distortion, preserve photometry and 
weight input images according the statistical significance. To check the methods, we applied 
them to both simulated and real multispectral images of the QuickBird and Landsat ETM+ 
satellites. The results show that we obtained almost a factor of 2 of super-resolution for both 
simulated and real data without amplifying the noise or altering the multispectral content of the 
original images. This was true even in the case of the real Landsat images severely affected by 
seasonal and temporal effects.    
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