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ABSTRACT: Legume content in grass-legume mixtures is a key parameter for deciding the forage quality and the 
amount of fertilizer application to the pasture due to nitrogen (N) fixation. This study investigated the ability of 
field hyperspectral radiometer (400-2350 nm) with genetic algorithm partial least squares (GA-PLS) regression for 
estimating legume content in a mixed sown pasture of Hokkaido, Japan. Canopy reflectance data and plant samples 
were obtained from 50 selected sites in two seasons (n = 100); spring (May) and summer (July) 2007. The 
predictive accuracy of GA-PLS was compared with that of multiple linear regression (MLR), and standard 
full-spectrum PLS (FS-PLS) for spring, summer, and combined datasets. The predictive ability of the model was 
assessed by the coefficient of determination (R2) and the root mean squared error of cross validation (RMSECV). 
Overall, the highest R2 and the lowest RMSECV were obtained in the GA-PLS models for all datasets (R2 = 
0.62-0.86, RMSECV = 4.10-7.20%). In MLR, selected wavebands in the final models were blue (400-456 nm) and 
red bands (659-670 nm) in visible wavelength, red-edge region (704-724 nm), near infrared regions (813, 937, and 
1121 nm), and shortwave infrared regions (2303-2344 nm) that are mainly linked to known biochemical 
components such as chlorophyll, nitrogen, lignin and cellulose. These results suggest that legume content in 
grass-legume mixtures can be predicted from field hyperspectral measurements, and that the predictive accuracy of 
the model can be improved by waveband selection using the GA-PLS. 
 
 
1. INTRODUCTION 
 
Legume content in grass-legume mixtures is a key parameter for deciding the forage quality and the amount of 
fertilizer application to the pasture due to nitrogen (N) fixation. Thus, timely assessment of legume content in 
grass-legume mixtures is required by land managers for efficient management of pastures. In laboratory, 
near-infrared spectroscopy (NIRS) is being a promising tool to determine clover content in grass-legume mixtures 
(Locher et al., 2005), which is based on diffuse reflectance of ground samples. The technology was used, at first, 
for predicting nutrients and feeding value in dried and fresh crop material (Berardo, 1997, Norris et al., 1976). 
However, the estimates of legume content involve clipping, bagging, oven-drying and weighing which are time 
consuming and resource intensive. Thus, their potential use for estimating legume content in the field and for 
application in large area is limited. In this context, remote sensing techniques offer a cost-effective solution for the 
quantitative estimation of pasture biochemical (e.g. chlorophyll and nitrogen contents) and biophysical variables 
(e.g. biomass, leaf area index) from local to regional scale. 
 
Predicting herbage mass and forage quality status with field spectrometry is a complex undertaking, since plant 
reflectance is strongly influenced by multiple, overlapping absorption features (Curran et al., 1992, Ferwerda et al., 
2006). Several studies applied stepwise multiple linear regression (MLR), which use several spectral wavelengths 
to estimate herbage mass and forage quality (Zhao et al., 2007). However, the drawbacks of extensive spectral 
overlap of individual biochemical properties, and multi-collinearity problems are well known. This usually occurs 
when the number of observations is smaller than the number of wavebands used in the analysis (Curran, 1989). In 
contrast, the partial least squares (PLS) regression has been recommended as an alternative approach to MLR to 
broaden the information contained in each model and thereby avoid over-fitting. 



 
PLS regression is a bilinear calibration method (Wold et al., 2001), unlike MLR, which uses all available spectral 
wavebands. The PLS used firstly in a laboratory calibration such as chemometrics and near infrared spectroscopy 
(NIRS), then now increasingly employed in the field hyperspectral data analyses for wheat (Hansen and Schjoerring, 
2003), paddy field (Nguyen and Lee, 2006, Takahashi et al., 2000) and heterogeneous grassland (Cho et al., 2007, 
Darvishzadeh et al., 2008). However, recent literatures indicated that waveband selection refine the predictive 
accuracy of the PLS model by optimizing important wavebands both in the laboratory NIRS (Jiang et al., 2002) and 
in the field hyperspectral measurements using iterative stepwise elimination (Kawamura et al., 2008) and genetic 
algorithm (GA) (Kawamura et al., 2010). Because GA has the ability to simulate a natural evolution of an 
individual, GA is well suited for solving variable subset selection problems (Ding et al., 1998). 
 
In previous study (Kawamura et al., 2011), using multiple linear regression (MLR), we demonstrated the potential 
exist in a field hyperspectral measurements for estimating legume content in a mixed sown pasture at Hokkaido, 
Japan. In this study, we compared the performance of the GA-PLS with standard full-spectrum PLS (FS-PLS) and 
MLR models for predicting legume content using field hyperspectral data. 
 
 
2. MATERIALS AND METHODS 
 
2.1 Study site 
 
The study was conducted in a 3.1 ha mixed sown pasture at the Hokkaido Agricultural Research Center (42°59' N, 
141°24' E). This area is in a snowy, cold region with annual snowfall of 5 m. The annual mean temperature is 7.1°C 
and the annual precipitation is 960 mm. After over-seeding with perennial ryegrass (Lolium perenne L.) and 
fertilizer in 2002, the paddock had been used in a grazing trial without further fertilizer application. At the time of 
the measurements, the pasture was dominated by perennial ryegrass, orchardgrass (Dactylis glomerata L.) and 
white clover (Trifolium repens L.)(Watanabe et al., 2004). Ten Japanese Black cows (Bos taurus L.) and eight 
calves were stocked during the growing season from early May to late October in 2007. 
 
2.2. Canopy reflectance measurement 
 
Field hyperspectral measurements were made on 22-23 May and 24 July 2007 between 10:00-14:00 using a portable 
spectroradiometer (FieldSpec® Pro FR, ASD. Inc., USA), which measures spectral reflectance in the 350–2500 nm 
wavelength range. Canopy reflectance and forage biomass data were collected from 50 selected sites in each season. A 
spectralon (Labsphere, Inc., Sutton, NH, USA) reference panel (white reference) was used to optimize the ASD 
instrument prior to taking three canopy reflectance measurements at each plot. The sensor head with a 25° 
field-of-view (FOV) was held approximately 50 cm above the canopy at the nadir position, producing a view area with 
a 22 cm diameter at the canopy level. Spectral data in several wavelength regions were eliminated because of high 
levels of atmospheric noise (1341–1479, 1751–1999 and 2351–2500 nm); and low signal-noise ratio in the instrument 
(350–399 nm). Thus, a total of 1563 spectral bands between 400 nm and 2350 nm were used for analyses. 
 
2.3. Pasture sampling and legume content  
 
The forage samples were separated into white clover (WC), grasses, weeds and dead material (which include litter) and 
dried in a forced-air oven at 70ºC for 48 h to determine the total and individual aboveground component biomass (BM). 
Legume content was calculated using the dried green biomass (GBM) components only, using the following equation: 
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where BMWC, BMgrass and BMweed are BM of WC, grasses and weeds, respectively. 
 
2.4. FS-PLS and GA-PLS regressions 
 
All data handling and regression calculations were performed using PLS_Toolbox version 6.2 (Eigenvector 
Research Inc., Manson, WA, USA) in Matlab software version 7.12 (Mathworks Inc., Sherborn, MA, USA). The 
GA-PLS regression was analyzed using Leardi (2000). In the present study, five GA runs were performed because 
each GA-PLS gave a slightly different model. The parameters and their condition were taken from previous study 
(Kawamura et al., 2010). The predictive ability of the FS-PLS and GA-PLS were evaluated by the coefficient of 
determination (R2) and the root mean squared error of cross validation (RMSECV) using a leave-one-out (LOO) 



cross-validation, as similar to our previous studies (Kawamura et al., 2008, 2010). 
 
To determine the significant wavelengths used in FS-PLS calibrations, the Variable Importance in the Projection 
(VIP) (Wold et al., 2001, Chong and Jun, 2005) was used. The VIP score gives a summary of the importance of an 
x-variable (waveband) for an observed y-variable (legume content), which was calculated as following equations, 
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where VIPk(a) is the importance of the kth predictor variables based on a model with a factors, wak is the 
corresponding loading weight of the kth variables in the ath PLS regression factor, SSYa is the explained sum of 
squares of y by a PLS model with a factors, SSYt is the total sum of squares of y, and K is the total number of 
predictor variables. A large VIP score, like PLS regression coefficient (b-coefficient), indicates an important 
x-variables (waveband) (Wold et al., 2001, Li et al., 2006). 
 
 
3. RESULTS  
 
3.1 Cross-validated calibration results 
 
Cross-validated calibration results between canopy reflectance spectra and legume content using MLR, FS-PLS, 
and GA-PLS are shown in Table 1, with the selected number of wavebands (NW), the selected NW as a percentage 
of the full-spectrum (NW% = NW/whole waveband [n = 1563] × 100), and selected wavebands in our previous 
study using MLR (Kawamura et al., 2011). The NW (NW%) ranged between 80 and 188 (5.12–12.03%) in 
GA-PLS. The optimum NLV ranged between 5 and 9 in FS-PLS and GA-PLS, determined as the lowest RMSECV 
values calculated from LOO cross-validation, to avoid over-fitting of the model. Figure 1 shows the relationships 
between measured and cross-validated prediction values of legume content in each datasets using MLR, FS-PLS 
and GA-PLS models. Overall, the highest R2 and the lowest RMSECV were obtained in the GA-PLS models for all 
datasets (R2 = 0.62-0.86, RMSECV = 4.10-7.20%). 
 
Table 1 Cross-validated optimum number of latent variables (NLV), coefficients o determination (R2) and root 
mean squared errors of cross validation (RMSECV) from MLR (Kawamura et al., 2011), FS-PLS and GA-PLS 
models with selected number of wavebands (NW) and their percentage of the full-spectrum (1,563 bands) 

 
NLV, number of latent variables (or PLS factors); RMSECV, root mean squared error of cross validation; NW, 
number of wavebands; NW%, number of wavebands percentage of all available bands. 
‡Selected wavebands in the GA-PLS models were shown in figure 2. 
 
3.2. Selected waveband regions from GA-PLS models 
 
Selected wavelength regions from five GA-PLS (as for the lowest RMSECV) to estimate legume content are shown 
in Figure 2. GA-PLS selected a wider range of spectral wavelength regions from within the visible (400-700 nm), 
near- (NIR, 700-1300 nm) and shortwave-infrared (SWIR, 1300-2350 nm) spectra, with slightly different regions in 
each data set. In May data set, selected five wavebands in MLR (409, 456, 724, 1324, 2323 nm) were included in 
GA-PLS model. The other hands, in July and combined data sets, slightly different from MLR were selected in 
GA-PLS models. The wavelength regions selected for legume content prediction were generally different among 
the data sets. However, wavelengths in the red-edge (700-760 nm) and 2320-2325 nm regions were commonly 
selected in GA-PLS models. 

NLV R 2 RMSECV NW NW% 1 2 3 4 5

May MLR 0.72 5.81 5 0.32 724 1324 2323 456 409
 (n  = 50) FS-PLS 9 0.73 5.67 1563 100.00

GA-PLS 8 0.86 4.10 147 9.40
July MLR 0.39 8.47 5 0.32 400 408 2315 669 1131
 (n  = 50) FS-PLS 5 0.30 9.14 1563 100.00

GA-PLS 7 0.72 5.73 80 5.12
May+July MLR 0.59 7.34 5 0.32 721 1132 707 2316 815
 (n  = 100) FS-PLS 9 0.53 8.07 1563 100.00

GA-PLS 9 0.62 7.20 188 12.03

Selected wavebands in the MLR models‡Regression
methodData set

Cross-validation for whole samples in each data set



 
Figure 1. Comparison of laboratory-measured legume content in May (n = 50), July (n = 50), and the combined data 
set (n = 100), along with their estimated values using MLR (left), FS-PLS (center), and GA-PLS (right) regressions. 
 

 
Figure 2. Selected wavebands in genetic algorithm partial least squares (GA-PLS) using canopy reflectance for (a) 
May (n = 50), (b) July (n = 50), and (c) combined data (May + July, n = 100) to estimate legume content, with VIP 
score (black bar; 1 > VIP score) and b-coefficient values in standard full-spectrum PLS (FS-PLS) model.  



4. DISCUSSION 
 
Our results indicate that legume content in grass-legume mixtures can be rapidly and nondestructively predicted 
from field hyperspectral measurement, and that the predictive accuracy of the PLS method was improved by 
selecting a subset of wavelengths related to pasture parameters and removing unrelated wavebands (Table 1). 
Particularly, GA based waveband selection greatly improved in July dataset (R2 = 0.30-0.72). The NW (NW%) 
remaining after waveband selection ranged 80-188 (5.12–12.03%) in GA-PLS models, suggesting that over 88% of 
the waveband information from the canopy reflectance spectrum was redundant and did not contribute to or disturb 
the prediction. These results in agreements previous results that the most useful information for predicting forage 
parameters was provided by only less than 20% of the wavelength region (400-2350 nm) (Kawamura et al., 2008, 
2010). These findings support previous results showing that the performance of PLS models can be improved 
through wavelength selection (Darvishzadeh et al., 2008, Cho et al., 2007, Kawamura et al., 2008). Moreover, 
spectral data efficiency would be improved by optimization of a wavelength subset in the PLS model. 
 
The wavebands selected in GA-PLS models do not match wavelengths identified by previous study using MLR 
(Kawamura et al., 2011), but in most cases they are found within 20 nm of previously known wavebands. In the 
visible region, chlrophyll absorption related blue region (400-460 nm) was selected. Red-edge region (700-760 nm), 
which is strongly related to chlorophyll concentration and has been used to estimate N status of crop and grasses 
(Horler et al., 1983, Lamb et al., 2002), and 2320-2325 nm region were commonly selected in all data sets. They 
are considered to be potentially important spectral bands for predicting legume content using field hyperspectral 
data. 
 
It is presumed that the predictive accuracy of remote sensing could not be better than that of laboratory NIRS 
methods because both plant materials and measurement configurations are far better controlled in NIRS. 
Nevertheless, remote sensing can provide quantitative information on legume content at geospatial and near 
real-time basis over wide areas, so that it has a great potential for efficient, productive and environment-friendly 
pasture management. 
 
 
5. CONCLUSIONS 
 
We investigated the performance of the GA-PLS in spectral assessment of legume content. Results indicated that 
legume content in grass-legume mixtures can be more accurately estimated by GA-PLS than MLR and FS-PLS 
using in situ hyperspectral reflectance data. GA based waveband selection in PLS calibration suggested that the 
important wavebands for estimating legume content are 5-12% of all 1,563 wavebands over the 400-2350 nm range. 
Using selected wavebands in the GA-PLS model, legume content were estimated with 62-86% accuracy using 
ground based canopy reflectance data. The use of PLS with GA waveband selection is promising for spectral 
assessment of legume content in grass-legume mixtures. Further, the waveband selection procedure refined the 
predictive ability, expected by optimization of the wavelength subset using GA-PLS. Such timely and accurate 
legume content prediction could provide some useful insights for the optimization of legume content management. 
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