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ABSTRACT: This paper highlights the study undertaken on extraction of biochemical parameters, namely the 

pigment chlorophyll, carbon, nitrogen and moisture of noebalanocarpus heimii sp. derived from ASTER data. These 

biochemical information are important elements in understanding plant physiological status.  The vegetation 

biochemical parameters also directly proportional to the stage of vigourness, and hence identifying those biochemical 

constituents are very crucial in understanding the biotic ecology, spatially and temporally. In this study, tree census 

data, in-situ spectro-radiometric and foliar samples of selected important marker species were modeled 

semi-empirically with the corresponding ASTER data.   Vegetation indices were used as main input in the modeling.  

Results indicated that Green NDVI and RDVI correlated with pigment chlorophyll (R
2
< 0.7, p <0.05, n=56) and 

moisture within canopies are moderately correlated with MSI (R2< 0.5, p <0.05, n=56) when modeled respective 

foliar’s nutrients for neobalanocarpus heimii sp. Hence, we concluded that ultra-fine spectral resolution of <5 nm is 

required for biochemical indicators in this studies. 

 

 

1 Introduction 
 
 
 Plant biochemical is an important parameter for testing plant physiological status. The biochemical involving 

activities of nutrient cycle, the distribution of biomass, carbon storage and decomposition of leaves (Matson et al, 1994 

and Serrano et al, 2002). The main reaction of biochemical plant usually occurs in chloroplasts. Through this 

component, pigment chlorophyll act as a medium for biochemical processes involving element such as carbon (C), 

hydrogen (H) oxygen (O2) to react with light to produce carbohydrates. This biochemical activities however began to 

change when across spatially and temporally. The variation of biochemical seems to be complex however this 

information is very useful for better understanding of forest ecosystems. 

 

 Remote sensing technique offers a reliable and a fastest way for leaf biochemical estimation across spatially and 

temporally (Stagakis el al, 2010). Yet, the intentions are not well given for biochemical studies on neobalanocarpus 

heimii sp. These species was also known as King Ashton and only found in tropical rainforest region. The previous 

research of biochemical studies showed their interest on their own type of species such as wheat (Song, 2008), mixed 

forest (Huber et al, 2008) and black Sprus (Zhang et al, 2008). Among researcher, traditional techniques for extracting 

biochemical still most popular however applying those data is costly and time-consuming. Sometimes, the use of 

traditional technique could bring low accuracy data due to limited collections number of sample from site location. 

Therefore, spectral changes caused by absorption or reflectance of leaf biochemical substances in the near-infrared to 

mid infrared frequency detector could give an effort for better estimates of canopy biochemical properties.  

 

 The previous report of biochemical related to sensor from broadband optical sensor such as Landsat TM (Song 

, 2008) and MODIS until to the use of narrowband spectral data such as satellite sensor Hyperion, CHRIS/PROBA 

(Stagakis et al, 2010), Airborne Imaging Hyperspectral (AISA) and Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) (Asner et al, 2008) was successful use for collecting biochemical information. But, each sensor owns 

different radiometric sensitivity that has promise to observe biochemical canopy species in unique changes of 

radiometric performance. The specific biochemical research also found in estimation of pigment chlorophyll (Penuelas 



et al, 1995), nitrogen (Serrano et al, 2002) and vegetation water content (Gao, 1996).  

 In this paper, we focused more on biochemical studies included of pigment chlorophyll, carbon, nitrogen and 

moisture status for our local species of neobalanocarpus heimii sp.  Using both in-situ data and ASTER data the 50 ha 

forest study plot in Pasoh forest reserve in Negeri Sembilan, Malaysia was used in this study.  Later, the results of two 

method of biochemical extraction using empirical and semi-empirical methods are compared to determine the 

relationship of biochemical information for neobalanocarpus heimii sp. 

 

2 Brief theoretical concept of biochemical parameters and remote sensing  

 In general, there are four types of model developed for biochemical extraction using remote sensing data. The 

first model built was a descriptive model where this model is not competent to extract biochemical information but 

only gives an idea of how chemical and structural properties of leaves influence in reflected energy sensed by the 

sensor. Then, a second type of model was a physical model. The model was introduced to alter descriptive model which 

based on kubelka-munk (KM) theory and plate-based model.  The both new models provide reverse the nature of leaf 

biochemical by the coefficient of absorption and dispersion of energy (Slater, 1980). However, differrent approach is 

given by plate-based model which determine biochemical information by the absorption energy received by the sensor 

of rough surface while KM model determines biochemical information by the energy reflected from four sided top 

layer of cuticle, parenchyma, and mesophyll span and lower layer of cuticle (Allen et al. 1968; Yamada and Fujimara 

,1988). 

 

 Then, the physical model PROSPECT was introduced (Jacquemoud and Scratched, 1990). In PROSPECT, 

three input parameters, namely water content, chlorophyll concentration and leaf mesophyll structure are used for 

estimating biochemical of plant. Dawson et al (1998) enhanced PROSPECT to LIBERTY for additional biochemical 

components such as carotenoids, anthocyanins, proteins and lignin. LIBERTY was purposely developed for structure 

of plant leaves, such as conifer needles while PROSPECT was developed for flat leaves structure. Fourty et al (1996) 

reported that most of reversed physical model is insufficient for determination of detailed biochemical compositions 

due to lack of absorption features.  

 

 The statistical-based empirical model was then introduced and has been widely used since then. These models 

provide better understanding of  the intereactions of spectral reflectance with leaf structure and plant biochemical 

properties. Hence, such analyses allow in-situ biochemical observations be regressed against and the corresponding 

reflectances of satellite remotely sensed data (Matson et al, 1994 and Serrano et al, 2002).  Asner and Martin (2008) 

suggested that partial least square (PLS) statistical method for regression analysis approach. This idea was also 

supported by Smith et al (2003) which shown PLS advantages compared to Stepwise Linear Regression. 

 

 Sometimes, regression model could provide weak correlation between data spectra and ground biochemical.  

Therefore, Shi (2004) suggest transformation of the spectral such as continuum removal to overcome the problem with 

strength signal. Shi (2004) also found that continuum removal able to produce better result than other spectral 

transformation such as Reciprocal spectra, Logarithm spectra, apparent absorption spectra, spectra 1st derivative, 2nd 

derivative spectra or its original reflectance, R. Other research by Kokaly et al (2003) also agreed that transformation 

spectra like continuum removal able to isolate the field of forest plant species composition. While, Schmidt and 

Skidmore (2003) in their studies found that continuum removal in the visible spectrum provide best spectral separation 

plants. However, Peterson et al(1988) was report that the use of transformation spectra such as 1st derivative spectra, 

dRi and apparent absorption spectra, RA able to showed an equal results compare to transformation spectra of 2nd 

derivative spectra, d2Ri. While, research by Jacquemoud (1995) found that the use of apparent absorption spectra, RA 

can provide better result than original reflectance, R data itself. Significant result also reported in Sims and Gamon 

(2002) studies where transformation of spectra by derivative was a good approach to separate the pigments in certain 

spectral bands, thus reducing space between plants and shadows. Table 1 showed algorithm for spectra transformation. 

 

 

 

 

 

 

 

 

 

 

 



Table 1 transformation spectra algorithm  

Type of transformation spectra Algorithm 

Reciprocal spectra , RR = 1 / R 

Logarithm spectra , RL = log (R) 

Apparent absorption spectra, RA = log (1/R) 

1st derivative spectra, dRi = (Ri+1 – Ri) / ∆λ 

2nd derivative spectra, d2Ri = (dRi+1 – dRi) / ∆λ 

Continuum removal, R‘ =  R/ Rc 

       (Sources: Shi, 2004) 

 

 

 

 Latest model of semi-empirical method was introduced to replace the use of empirical method. Thenkabail 

et al (2000) was explained that semi-empirical model using vegetation index promoted signaling pathway based on 

theory of wave spectra ratio between the reflectance range in visible and infra-red spectrum energy. They also reported 

that the use of this model is very sensitive to the plant and estimating of green cover. The model also was concise and 

clear to enhance the reversal of power by the wave spectra of the material in plant biochemistry (Jackson and Huete 

,1991). Furthermore, the use of this vegetation index model are prepare to reduce the impression of topography, 

atmospheric, background soil,  leaf orientation, soil moisture and  the position angle of the sun. The history of 

biochemical model used in estimating leaf or plant biochemical showed in Table 2. 

 

Table 2 Some of biochemical model developed for remote sensing data 

Type of modeling Brief explaination of model 
Descriptive model Theory-based models : ray tracing and stochastic model  

Physical model Model-based simulation: Kubelka-Munk, Plate based, PROSPECT, 

LIBERTY (Slater, 1980; Allen et al, 1968; Yamada and Fujimara 

,1988; Jacquemoud and Scratched, 1990; Dawson et al, 1998) 

Empirical model Model-based statistic: Partial least square (PLS), Stepwise Linear 

Regression (SLR) (Matson et al, 1994; Serrano et al, 2002; Asner and 

Martin ,2008 ; Smith et al, 2003) 

Semi-empirical model Model-based  statistic: Vegetation index (Thenkabail et al , 2000; 

Jackson and Huete ,1991) 

 

 

3 Methodology and Approach 

 

  ASTER satellite data  were acquired in 14 spectral bands; in visible  (520-600, 630-690) nm, infrared (760-860, 

1600-1700) nm, shortwave infrared (2145-2185, 2185-2225, 2235-2285, 2295-2365, 2360-2430)nm and thermal 

infrared(8125-8475, 8475-8825, 8925-9275, 10025-10095) nm. The relationship ASTER’s reflectances and in-situ 

biochemical of selected vegetation targets were analyzed chlorophyll pigment, carbon, nitrogen and moisture status. 

The spectra range 520 to 690nm was used to estimate chlorophyll pigment, while spectra range 760nm to 1300nm is 

examined for carbon and nitrogen; canopy moisture status using spectra range of 1300 to 2500nm.  The corresponding 

in-situ spectroradiometer observations of the target vegetation class neobalanocarpus heimii sp., was performed in the 

experimental near real-time to the ASTER data acquisition.  Both the ASTER and in-situ data sets were then input into 

semi-empirical employing the related vegetation  indices given in equation in table 3. 

 

 

 

 

 

 

 



Table 3  The original of vegetation index modified according to Aster spectral range and the result was verify using 

overall accuracy and kappa statistic. 

Vegetation 
Index(VI) 

Aster  Overall 
accuracy 

Kappa 
statistic 

Equation References 

Chlorophyll 
Pigment 
-Broadband 
spectral 

EVI  - - 2.5((Rnir-Rred) / (Rnir+6Rred-7.5Rblue+1))                                    Huete et al. (2002) 
Green NDVI  80.7278% 0.7312 (Rnir-Rgreen) / (Rnir + Rgreen)                             Gitelson et al. (1997) 
NDVI 77.0889% 0.6828 (Rnir+ Rred) / ((Rnir + Rred)                                        Tucker (1979) 
SR 67.2507% 0.5578 (Rnir / Rred)                                        Jordan (1969) 

Chlorophyll 
Pigment 
-Narrowband 
spectral 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CARI 80.3235% 0.7233 (R700 (a670 + R670 +b)) / (R670 (a2+ 1)0.                  

Dimana a= (R700-R550)/150; b= R550-a550                                        Kim et.al (1994) 
GI 62.264% 0.4871 R554/R677                                Tejada et.al (2005) 
GVI 61.7251% 0.4748 (R682-R553) / (R682+R553)                                              Gandia et al. (2004) 
mCARI 61.7251% 0.4797 [(R700-R670) - 0.2(R700-R550)](R700/R670)                                  Daughtry et.al (2000) 
mCARI2  37.8706% 0.2109 1.2 [2.5(R800-R670)-1.3(R800-R550)]                                        Haboudane et al. (2004) 
mNDVI  - - (R800-R680) / (R800+R680-2R445)                                             Sims dan Gamon (2002) 
Mndvi2-705  - - (R750-R705) / (R750+R705-2R445)                                                                  Datt (1999) 
Msavi 81.2668% 0.7392 0.5[ 2R800+ 1 - √(2R800+1)2- 8 (R800-R670)]                                          Qi et al. (1994) 
mSR - - (R800-R445) / (R680-R445)                                                        Sims dan Gamon (2002) 
Msr2-705  - - (R750-R445) / (R705-R445)                                                                                  Datt (1999) 
mTVI 78.0323% 0.6893 1.2[1.2(R800-R550)- 2.5 (R670-R550)]                                        Haboudane et.al (2004) 
NDVI705  - - (R750-R705) / (R750+R705)                                               Gitelson dan Merzlyak (1994) 
OSAVI 79.6496% 0.7174 1.16(R800-R670) / (R800+R670+0.16)                                            Rondeaux et.al (1996) 
RDVI 81.5364% 0.7431 (R800-R670) / √(R800+R670)                                                         Roujean dan Breon(1995) 
REP - - 700+ 40[(((R670+R780)/2) –R700)/ (R740-R700)]                               Guyot et.al. (1988) 
SIPI  - - (R800-R450)/ (R800-R650)                                                                Peneulas et.al (1995) 
SIPI2 - - (R800-R440)/ (R800-R680)                                                                 Peneulas et.al (1995) 
SPVI 82.3450% 0.7508 0.4[3.7(R800-R670)-1.2(R530-R670)]                                                 Vincini et.al (2006) 
SR1 - - R750/R700                                                                              GitelsondanMerzlyak(1997) 
SR2 67.2507% 0.5578  R752/R690         

GitelsondanMerzlyak(1997) 
SR3 75.0674% 0.6545 R750/R550                                                                               GitelsondanMerzlyak(1997) 
SR4 69.5418% 0.5791 R672/ R550                                                                                                         Datt (1998) 
TCARI 73.3154% 0.6324 3[(R700-R670)-0.2(R700-R550)(R700/R670)]                             Haboudane et.al (2002) 
TSAVI 79.6496% 0.7183 a(R875-aR680-b)/[R680+a(R875-b)+0.08(1+a2)] 

Dimana a= 1.062, b=0.022                                                              Rondeaux et.al (1996) 
TVI 79.5148% 0.7107 0.5[120(R750-R550)-200(R670-R550)]                                        Broge dan Leblanc (2001) 
VOG1 - - R740/R720                                                                                      Vogelmann et.al (1993) 
VOG2 - - (R734-R747)/ (R715+R726)                                                              Tejada et.al (2001) 

 VOG3 - - (R734-R747)/ (R715+R720)  

Nitrogen 
 

NDNI - - [log(1/R1510)-log(1/R1680)]/[log(1/R1510)+log (1/R1680)]             Serrano et.al (2002) 
 

 
Carbon 
 

NDLI - - [log(1/R1754)-log(1/R1680)]/[log(1/R1754)+ log(1/R1680)]             Serrano et.al (2002) 
CAI  - - 0.5[(R2000-R2200)/(R2100]                                                                      Daughtry (2001) 

Water  WBI - - R900/R970                                                                                          Penuelas et.al (1993) 
NDWI 42.8571% 0.2472 (R857-R1241) / (R857+R1241)                                                             Gao (1996) 
MSI 43.1267% 0.2591 R1599/ R819                                                                                     Hunt dan Rock (1989) 
NDII 24.3935% 0.0482 

 
(R819-R1649) / (R819+ R1649)                                            Hardisky et.al (1983) 

 

 

 

4 Results 

 

 The biochemical experiment based on semi-empirical method reliable to verify result using coefficient of 

determination, regression model and p-value statistic. During this study, we do a test on 39 different types of vegetation 

index to represent each biochemical information consist of pigment chlorophyll, carbon, nitrogen and water status. 

However, our result showed only three type of vegetation index test on Aster data give a good result. The vegetation 

index result first was evaluated based on overall accuracy and kappa statistic. The Green NDVI showed overall 

accuracy test result of 80.73 percent with kappa statistic 0.731 and RDVI showed overall accuracy test result of 81.54 

percent with kappa statistic 0.743 for biochemical pigment chlorophyll studies. While, the MSI showed overall 

accuracy test result of 43.13 percent with kappa statistic 0.259.The overall result of vegetation index test during this 

studies was showed in Table 3. From this model, we do regression of biochemical between ground and sensor data and 

applied differ transformation spectra test. Surprising, our result showed a standard transformation spectra of 1
st
 

derivative give a best result on biochemical tested on Green NDVI, RDVI and MSI (Table 4).  The result for Green 

Ndvi showed coefficient of determination is equal to 0.079, regression model is equal to 0.006 and P-value is equal to 



0.566. While, the RDVI showed coefficient of determination is 0.256, regression model is 0.066 and P-value 0.066 and 

MSI showed result coefficient of determination is equal to 0.139, regression model is equal to 0.019 and P-value is 

equal to 0.311. Although this semi-empirical method does not give a good model for biochemical information however 

those result give some idea on later biochemical process could be analyze based on 1st derivation transformation 

spectra on vegetation index. The 1
st
 derivative spectra help to increase the strength of the biochemical spectra signal. 

 

Table 4 Biochemical analysis of neobalanocarpus heimii sp. (NEOBHE) with n= 56 based on semi-empirical 

method 

Semi-empirical method 
(Ground versus Aster VI)  

NEOBHE, 
N=56  

R  RA  RR  RL  dRi  d2Ri  

Green NDVI  Multiple R  0.060  0.053  0.046  0.053  0.079  0.070  
R2 0.003  0.003  0.002  0.003  0.006  0.005  

P-value  0.662  0.700  0.738  0.700  0.566  0.616  

RDVI  Multiple R  0.157  0.165  0.154  0.165  0.256  0.231  

R2 0.025  0.027  0.024  0.027  0.066  0.053  

P-value  0.249  0.224  0.256  0.224  0.059  0.093  

MSI  Multiple R  0.074  0.063  0.052  0.063  0.139  0.131  

R2 0.005  0.003  0.002  0.003  0.019  0.017  

P-value  0.587  0.646  0.704  0.646  0.311  0.344  

 

 

5 Conclusion  

 This study demonstrates that biochemical experiment on neobalanocarpus heimii sp. does not perform well in 

providing biochemical information using Aster data. The biochemical studies may be improved by using high spectral 

resolution data such as Hyperion satellite data. The ability to predict canopy biochemical properties using relationship 

developed in this study, however remains to be test.  
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