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ABSTRACT: Knowledge of the unsaturated soil hydraulic properties is mandatory for describing and predict ing 

water flow in the vadose zone. Various types of pedotransfer functions (PTFs) were developed for estimating related 

parameters in the van Genuchten–Mualem (VGM) model. Unfortunately, no good method currently exists to decide 

which PTFs should be used for a specific site or application. So this study aims to determine the uncertainty in  soil 

hydraulic parameters on soil moisture prediction. A sensitivity analysis was carried out at three sites (Miyun, Daxing 

and Guantao) in  Hai River Basin, which  represent three different  underlying surfaces and provide in -situ 

meteorological and soil moisture measurements. A vertical one dimensional Rechards’ equation based on the finite 

difference method was used, forced with ground-measured rainfall and evapotranspiration data. Compared  to the 

observed soil moisture, the model performance was found to be good, with root mean square erro r (RMSE) of 0.0313, 

0.0359 and 0.0409 for Miyun, Daxing and Guantao, respectively. Secondly, Gaussian error propagation (GEP) 

principles was used to quantify the random uncertainty of the five parameters (Ks, θs, θr, α, n) of the VGM model in  

the surface, root zone and bottom layer on soil moisture simulation. The result shows that the saturated soil moisture 

(θs) and shape parameter (n) in each layer are the most sensitive parameters, only slightly different  degree of 

sensitivity at different sites. Additionally, the response of the entire soil profile moisture to the changes of the most 

sensitive parameter in each layer was analyzed, which provides a reliab le basis to optimize the parameters, and 

improve the prediction accuracy of the model.  

 

1. INTRODUCTION 

 

Soil moisture dynamics is the central part and the contact link of the So il-Plant-Atmosphere Continuum system 

(SPAC), as it’s comprehensive response to climate, soil, ecolog ical and other processes in soil water balance. So il 

water transport in the vadose zone is considered as the most important and most complex part in hydrological cycle. 

The Richards’ equation (Richards, 1931) is the most general method to compute soil moistures and  hydrological 

fluxes, such as infiltration, infiltration excess, evapotranspiration (ET) and groundwater recharge. Commonly 

encountered field conditions, such as soil layering, shallow groundwater table and the effect of soil moisture on 

infiltration, are easily incorporated into Richards’ equation (Downer and Ogden, 2004). Soil hydraulic properties (i.e. 

soil water retention curve and soil hydraulic conductivity) is a  fundamental part of solving the Richards ’ equation and 

therefore their accurate determination is essential to model soil moisture dynamics. Unfortunately, investigations for 

the hydraulic characterization of soils are t ime-consuming and costly, and the accuracy of the results obtained by the 

different pedotransfer functions (PTFs) is still debated, in spite of their wide applicat ion. Therefore , we may wonder 

how the uncertainty in soil hydraulic parameters relates to the uncertainty  of simulated soil moisture. The 

incorporation of uncertainty in model parameters is important for correct representations of the hydrologic model 

response. Unfortunately, modeling of uncertainty is not a standard practice in hydrologic modeling and there is a lack 

of framework for assessing parameter uncertainty and propagating the uncertainty through the model.  

At present, much work has focused on identifying the uncertainty of the soil hydraulic properties  or evaluating the 

applicability and accuracy of various PTFs. Wösten et al. (2001) rev iewed the current status of PTFs development, 

their uncertainty and their pract ical use in modeling. They showed that quantification of uncertainty in PTFs was 

useful and that functional evaluation of PTFs was a good tool to assess the desired accuracy of the PTFs for a specific 

application. Nemes et al. (2006a) tested various PTFs with SWAP and analyzed their performance from multiple 

aspects. They underlined the importance of the choice of the PTFs to be adopted. Stumpp et al. (2009) evaluated two 

types of PTFs (ROSETTA and SOILPROP) for their accuracy and applicability by  direct  evaluation and functional 

evaluation based on Hydrus-1D. 

To date, very few studies have been attempted to investigate the influence of randomness in each parameter of the soil 

hydraulic properties on the variance of the soil moisture simulat ion. Coppola et al. (2009) investigated the relative 

importance of each uncertain and spatially variab le parameter that entered the bimodal hydraulic functions in the flow 

processes studied based on Monte Carlo analysis. They argued that the contribution of each parameter depended only 

partly on the coefficient of variation, much more on the sensitivity of the model to the parameters and on the flow 

process being observed. Mölders (2005) applied  Gaussian error propagation (GEP) to calculate p lant- and 



soil-parameter-caused uncertainty of surface fluxes predicted by the hydro–thermodynamic soil–vegetation scheme. 

In this study, GEP principles was applied at three sites (Miyun, Daxing and Guantao) in Hai River Basin, to quantify 

the influence of the random uncertainty of the  parameters  in the VGM model on the soil moisture obtained by a 

one-dimensional Richards’ equation on the basis of the finite difference method. Assessing the weight that each 

parameter has in a specific flow process allows us to focus our investigation on those parameters which dominate 

system uncertainties. Th is is the first step to better understanding the effect of these uncertainties on model predict ion. 

 

2. MATERIALS AND METHODS 

 

2.1 Governing equations 

 

Combination of Darcy's law and the principle of mass conservation leads to the well-known Richards’ equation. In the 

vertical dimension, the  -based Richards equation can be expressed as, 
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Where θ is volumetric soil moisture content (cm
3
cm

-3
), t is time (min), z is the elevation relat ive to a p lane (positive 

downward) (cm), K(θ)is unsaturated hydraulic conductivity (cm/min), D(θ) is soil diffusivity (cm
2
/min ), and S is soil 

moisture sink term (e.g., transpiration loss in the rooting zone), which was not included in  the original equation. 

The soil hydraulic propert ies were parameterized using the Van Genuchten–Mualem constitutive relationships 

(Mualem, 1976; Van Genuchten, 1980): 
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Where, Se is degree of saturation (cm
3
cm

-3
), θs is the saturated moisture content (cm

3
cm

-3
), θr  is the residual moisture 

content (cm
3
cm

-3
), Ks is the saturated hydraulic conductivity (cm/min), α is related to the inverse of air entry 

parameter which is the inverse of cap illary  fringe thickness  (cm
-1

), and n is the shape parameter or  pore size 

distribution parameter. 

Running the model required specifying the hydraulic parameters θs, θr , α, n and Ks. These parameters were estimated 

using ROSETTA (Schaap et al., 2001), a pedotransfer function model that predicts hydraulic parameters from soil 

texture and related data. Rosetta contains a hierarchy o f pedotransfer functions that can be used depending upon 

available data. We predicted the hydraulic  parameters using ground-measured data, including bulk density and 

percentages of sand, silt, and clay (Table 1). According to the measured soil mechanical composition data, the soil 

profile was modeled as a three-layer system (surface, root zone and bottom) with differing soil hydraulic properties. 

Table 1   Measured soil textural and bulk density data, along with estimated hydraulic parameters by Rosetta.  

 Clay 
(<2um) 

Silt  
(2-50.um) 

Sand 
(50-2,000um) 

bulk density 
(g/cm3) 

θr 
(cm3cm-3) 

θs 
(cm3cm-3) 

a 
(cm-1) 

n Ks 

(cm/min) 
GT          

0-25 41.68% 54.84% 3.48% 1.47 0.0933 0.4569 0.0107 1.4098 0.003465 

26-45 56.64% 40.35% 3.01% 1.47 0.0982 0.4658 0.0151 1.2921 0.003403 

45-100 30.09% 47.76% 22.15% 1.53 0.0768 0.4026 0.0089 1.4808 0.003431 

MY          

0-15 23.63% 53.22% 23.15% 1.38 0.0724 0.4211 0.0064 1.6028 0.009563 

16-50 23.84% 48.89% 27.27% 1.48 0.0687 0.3958 0.0075 1.5501 0.005472 

50-100 15.95% 35.32% 48.73% 1.49 0.0511 0.3772 0.0145 1.457 0.011306 

DX          
0-30 17.24% 58.73% 24.03% 1.40 0.0619 0.3991 0.0054 1.6566 0.012965 

30-50 18.32% 55.92% 25.77% 1.49 0.0603 0.3801 0.0063 1.6048 0.007653 

50-100 17.86% 58.23% 23.91% 1.40 0.0629 0.4007 0.0055 1.6528 0.012382 

Eq. (1) is subjected to specified init ial and boundary conditions.  The in itial condit ion was implemented using cubic 

spline interpolation based on the soil moisture of the observation depths to obtain the soil moisture in soil profile . For 

the field case, the top boundary is  governed by the atmospheric conditions , whose processes might be infiltration due 

to rainfall/ irrigation or evaporation. While a free drainage condition (unit hydraulic gradient) o r constant moisture 

content was used at the bottom, which is appropriate due to fact that the water table was far below the root zone.  
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Analytical solution of this non-linear part ial d ifferential equation described by Richards for the field conditions is not 

available. Hence, one has to discretize the equation into space and time using either finite difference or finite element 

methods. Finite elements are advantageous at an irregular geometry in 2 and 3-dimensional flow domains. In one 

dimension finite d ifference is advantageous because it needs no mass lumping to  prevent  oscillat ions (Van Genuchten, 

1982; Pan et al., 1996), and is relat ively easy to conceive and to implement in numerical routines. A model based on 

the fully implicit backward finite difference scheme has been developed in the IDL language to solve the equation 

numerically. 

An essential element of the numerical solution of Richards’s equation is that the solution converges as the spatial 

resolution increases. Using a sufficiently fine discretization near the soil surface is critical, using fine discretization 

deep in the soil column achieves little benefit (Downer and Ogden, 2004). In this study, 100cm of the soil profile was 

discretized  into 53 nodes, The cell size in  the top layer (0-40cm ) was 1 cm and  cell size  in the bottom layer(40-100cm) 

was 5 cm, which greatly improved the operation speed while ensure the prediction accuracy of the model. 

The convergence criterion below was implemented in the iterative solution of RE. 
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Where e is absolute water content tolerance for nodes  (its recommended value is 0.0001). Th is parameter represents 

the maximum desired absolute change in the value of the water content between two successive iterations during a 

particular time step. Subscript i represents each node on the soil profile, Superscript j+1 denotes the next t ime, P 

indicates the number o f iterations . The variable, optimal time step should min imize the computational effort  of a 

simulation. The number of iterations needed to reach convergence in the former time step, Nit, can be effectively used 

to derive the optimal time step according to the following criteria.   

Nit<3: multiply time step with a factor 1.3; 

3 ≤Nit ≤6: keep time step the same; 

Nit>6: divide time step by a factor 1.3. 

The actual time step was determined using above criteria in combination with an initial time step, specified min imum 

and maximum time steps.  

 

2.2 GAUSSIAN ERROR PROPAGATION (GEP) PRINCIPLES  

 

The soil moisture simulated by the model is a  function of  =f（ x1，……，xn） of one or more empirical parameters 

xi  that are the mean  values obtained from measurements  or simulated by other experience functions . The simulated 

soil moisture will be “error” burdened by an amount 
  resulting from the random variability o f empirical parameters 

usually characterized by standard deviations
ix . GEP princip les (e.g., Kreyszig 1970; Meyer 1975) permit 

determining a predicted flux’s statistical uncertainty. The standard deviation of the predicted flux was obtained by the 

error propagation formula: 
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Where ρij is the correlation coefficient between two different parameters Xi and Xj. In this study assuming it is 

independent between the input parameters , ρij=0, then the simplified form of the above formula can be written as: 
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Here n represents the number of empirical parameters. 2

ix the variances，{ , σxi} and 
 are denoted  contribution  

term of the ith parameter and the total error of the output respectively.  

Equation (9) assumes that 1) errors are normal d istributed and 2) errors are independent between various  model 

parameters, which is justified for these parameters. 

 

2.3 Experimental design 

 

The above model was implemented by IDL language and conducted at three sites in Hai River Basin: Miyun 



(40°37′50.82″N, 117°19′23.83″E, MY) from 23th April to 30th June in 2009, Daxing (39°37'16.7″N, 116°25′37.2″E, 

DX) from 21th August to 30th September in 2009, Guantao (36°30′54.1″N, 115°07′38.7″E, GT) from 16th June to 

16th August in 2008. Broader d istribution of three stations represent three typical underlying surface types in Hai 

River Basin: northern mountains (fruit trees, maize / bare ground), central suburban farmland (wheat / corn,  

vegetables, fruits) and farmland in southern plains (winter wheat / maize, cotton). Eddy-covariance system (EC), 
large aperture scintillometer (LAS) and automatic weather stations were installed in three sites. Soil moisture sensors 

(Decagon: ECH2O-10) were installed in the profile at depths of 2 (only in Guantao), 5, 10, 20, 40, 60 and 100cm, 

respectively. 

The HYDRUS-1D simulations were also conducted using the same data at three sites, as a model of cross-validation. 

The root mean squared error (RMSE) between simulated (θi) and observed values (
i̂ ) was calculated to evaluate the 

performance of the model. 
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On the assumption that systematic errors have been excluded, the GEP analysis based on the calculation experiment 

consists of the following procedures: 

1. Control experiment: throughout the sensitivity study, the soil moisture was taken as a "true value" simulated by 

the model based on the soil hydraulic parameters θs, θr, α, n and Ks taken as the default values  in table 1.  

2. Generate random sample of individual parameter: the mean value was the default parameter value, and standard 

deviation was set to be 10% of the defau lt parameter value , then normal distribution random samples (n ) of the 

parameter were generated;  

3. Run a series of simulations: in each simulat ion the individual parameter values in one case was  replaced by the 

random sample  while all other parameters were held at their baseline values , to get t ime series of the soil moisture 

profile; 

4. Calculate standard deviations of all the output series at every moment at each depth, which were contribution 

terms of the individual parameter at every moment in the soil profile. 

5. Repeat (2) - (4) for each model parameter, to get the contribution term of each parameter. 
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6. Apply GEP error propagation formula to calculate the  total error as a consequence of the errors in the parameters. 

     2n2221

       (12)
  

7. The contributions rate of indiv idual parameter accounted for the total error (i.e. the percentage standard 

deviations (PSD) of the individual parameter in entire standard deviations ) was calculated by PSD=  
  /i  . 

 

3. RESULTS AND DISCUSSION 

 

3.1 Performance evaluation 

 

For each site, the soil moisture simulated by the 

model in this study and hydrus-1D were 

compared to the in-situ observations. The RMSE 

of simulated soil moisture corresponding to 

observed values are showed in  Table  2. It  

indicates that the model with smaller RMSE than 

the HYDRUS-1D software  has a better 

consistency with the observation. The total 

RMSE of the model simulated soil moisture in 

Miyun, Daxing and Guantao are 0.0313, 0.0359 and 0.0409, respectively, while the HYDRUS-1D software are 

0.0376, 0.0647 and 0.0467, respectively. Simulated soil moisture has a good agreement with observed soil moisture, 

and model simulation results are better than the results of HYDRUS-1D software. Hence, the model we used here is 

reliable enough to simulate the soil water dynamic changes at each depth of soil profile, and the sensitivity analysis of 

the model can be carried out.  

 

3.2 Uncertainty and sensitivity assessment 

 

In order to identify crit ical parameters , we estimate the mean  contribution of indiv idual parameter to  the whole soil 

profile whose contribution to the uncertainty has been time-averaged according to its own t ime series  (see Table  3). 

The effects of the uncertainty in the parameters on the predicted soil moisture can vary strongly. Figure.1 show that at 

Table 2  RMSE of simulated soil moisture corresponding to  observed values 
 2cm 5 cm 10 cm 20 cm 40 cm 60 cm 100cm total 

Miyun         

simulation  0.0675 0.0317 0.0256 0.0340 0.0254 0.0042 0.0313 

HYDRUS  0.0992 0.0654 0.0197 0.0262 0.0106 0.0042 0.0376 

Daxing         
simulation  0.0168 0.007 0.0401 0.0797 0.0402 0.0319 0.0359 

HYDRUS  0.0428 0.0286 0.0652 0.1208 0.0676 0.0631 0.0647 

Guantao         

simulation 0.0509 0.0484 0.0491 0.0291 0.0659 0.0104 0.0330 0.0409 

HYDRUS 0.0728 0.0689 0.0692 0.0259 0.0385 0.0212 0.0304 0.0467 



three sites, the contributions rate of the saturated soil moisture (θs) and shape parameter (n) in  each layer all exceed 

other terms by more than an order of magnitude, which indicate θs and n are critical parameters and more sensitive 

than other parameters. However, there is slightly different degree of sensitivity at different sites. In Guantao and 

Miyun, the total errors are 0.03211 and 0.01551, respectively. The contributions rates of θs and n in each layer 

induced soil moisture uncertainty are of a similar order of magnitude. In Daxing, the total error is 0.02134, and the 

contributions of θs and n in the bottom layer are significantly higher than that in surface and root zone layers, wh ich 

lead to their contribution rates are larger than 50%. We can conclude that the saturated soil moisture (θs) and shape 

parameter (n ) are the highest sensitivity to the simulat ion of soil moisture and the largest contribu tion rate to the 

uncertainty of soil moisture. Improv ing the two parameter precision is expected to improve soil moisture simulat ion. 

In fact, this is consistent with some existing research results. Gribb et al. (2009) found that simulations of θ(t ) could  be 

significantly improved by simply rep lacing the saturated and residual moisture contents with the maximum and 

minimum measured moisture contents . We further take account of the research result of Baroni et al. (2010) who 

showed a high variability o f the soil hydraulic parameter values in  the different sets, esp ecially in case of the saturated 

hydraulic conductivity Ks and of the parameter α, so we can conclude that the hydraulic parameters with the highest 

relative erro r are not necessarily  the greatest contributors to the standard deviation of the predicted soil moisture, as 

Mölders (2005) and Coppola et al. (2009) have found from their research. 

Table 3 the contribution of individual parameter in the surface, root zone 

and bottom layer at 3 sites. 

Figure.1 the contributions rate of individual parameters accounted for 
the total error at three sites. Parameter suffix -1,-2,-3 stands for the 

parameter in surface, root zone and bottom layer, respectively.  
 

Additionally, the effect of ±10% perturbations to the critical hydraulic parameters (θs and n) at a time in individual 

soil layers on the simulated soil moisture in soil profile was evaluated. A parameter was changed by ten percent of its 

value, then the simulation was run and the effects of that parameter change on the soil moisture at  each depth were 

assessed by calculating the mean deviat ion (MD) between the simulated soil moisture(θi) from the perturbation 

parameter and the "true value"(
i̂ ).  
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Figure.2 soil moisture changes at each depth in response to perturbations of θs and n in each layer in Miyun, Daxing, Guantao sites. 

The MD at each depth at three sites is showed in Figure.2. Here, a positive (negative) MD of the soil moisture 

represents an increase (decrease) of the simulated soil moisture due to the changed parameter. It shows that the soil 

moisture profile respond differently to the change of parameters of each layer. Except for Guantao, the effect of 

perturbations of θs and n in the surface layer on soil moisture is small with no obvious pattern found in their effects on 

soil moisture profile, which may  indicate that other factors like rainfall and evaporation can greatly  account for this 

phenomenon.  The impact of θs and n change in root zone layer in Daxing is aslo small, while in Miyun and Guantao, 

 KS s
 

r
 α n 

GT      
0-25 0.002948 0.01791 0.002559 0.002886 0.007085 

26-45 0.000958 0.009357 0.001173 0.001702 0.011374 
45-100 0.002357 0.012268 0.0018 0.000165 0.009595 

MY      

0-15 0.000159 0.001029 0.000121 0.000232 0.001874 

16-50 0.001214 0.007704 0.000949 0.001039 0.009202 

50-100 0.000739 0.004257 0.000675 0.000656 0.006384 

DX      

0-30 0.0001606 0.000921 7.25E-05 0.00032 0.001028 

30-50 0.000192 0.001139 0.000161 0.000512 0.00176 

50-100 0.0018216 0.014893 0.001431 0.001480 0.014736 



a crit ical point near the boundary between root zone layer and bottom layer, on the two sides of which the impact of 

parameter change on the soil moisture is opposite, for the reason that the s oil unsaturated hydraulic conductivity and 

soil diffusivity generally increase with the increase of  n , but decrease with the  increase of θs and vice versa, whose 

decrease  directly impact the drainage of water out of the root zone and leads to the soil moisture increase above the 

root zone layer, while decrease in the bottom layer. The entire soil moisture profile response to perturbations of θs and 

n in  the bottom layer is relat ively consistent at three sites that s oil moisture generally  increase with θs, but decrease 

with the increase of n and vice versa. In sum, the in fluence of parameter change of θs and n in root layer and the 

bottom layer on soil moisture have a major influence on the entire soil moisture profile simulation, not as simple as in 

homogeneous soil condition. Unfortunately, in most cases soil was taken as homogeneous, without considering of the 

vertical heterogeneity. 

 

4.   CONCLUSIONS 

 

The soil moisture (θ)-based Richards’ equation based on the finite difference method was used to govern the vertical 

water movement at three sites, and the model performance was found to be good, with root mean square error (RMSE) 

of 0.0313, 0.0359 and 0.0409 for Miyun, Daxing and Guantao, respectively. Therefore, the model is reliab le enough 

to accurately simulate the soil water dynamic changes at each depth of soil profile. 

GEP principles was introduced to examine model uncertainty in pred icted soil moisture caused by statistical 

uncertainty of soil hydraulic parameters (θs, θr, a , n and Ks) occurring in the Rechards’ equation at three sites. Our 

analysis gave evidence that uncertainty in the saturated soil moisture (θs) and shape parameter (n ) identified as the 

critical parameters dominated uncertainty in  soil moisture, and that increasing accuracy of the crit ical parameters 

would reduce model uncertainties. 

The response of the entire soil profile moisture to the changes of the most sensitive parameters was analyzed at  3 sites. 

We found that the response of soil moisture to the hydraulic parameters was not simply decrease with depth, and that 

θs and n in root layer and the bottom layer have a major influence on the entire soil moisture profile  simulat ion. 

Therefore we suggest that soil vertical heterogeneity should be considered in soil moisture simulation. 

Since GEP method can identify critical parameters , the GEP analysis could form a basis for prioritizing which 

parameters to determine with higher accuracy aimed at improving soil moisture simulation. 
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