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ABSTRACT: Soil salinization is one of the most common land degradation progresses in Yellow River Delta 
(YRD) of China. In this study, deterministic and geostatistical methods were jointly applied to estimate soil salt 
content (SSC) in this area on the basis of field spectra and Advanced Land Imaging (ALI) data. SSC and field 
spectra of 50 soil samples were collected to investigate the relationship between soil salinity and ALI-convolved 
field spectra using partial least square regression (PLSR) method. Significant correlation was observed with 
determination coefficient (R2) of 0.837. Subsequently, SSC map was predicted using ALI reflectance data and the 
PLSR model. The predictions show the similarity to the field observations. To detect soil salinity in the vegetated 
area, 314 samples were systematically collected on PLSR-derived SSC map and were then interpolated using 
universal kriging (UK) method. Cross validation results show that 95.9% of the 314 samples are included in the 
confidence intervals under confidence level of 95% through a Bland-Altman plot. Therefore, it is convinced that the 
combination of methods provides an inexpensive and labor-saving approach to the estimation of soil salinity in the 
entire study area with desirable accuracy. 
 
1. INTRODUCTION  
 
As reported in 1990’s, 7% of the earth’s terrestrial surface, especially irrigated lands were contaminated with 
excessive salt (Metternicht and Zinck 2003). Remote sensing technique has shown great advantages in identifying 
and mapping soil salinity in landscape scale for recent decades. Since 1980’s, computer-aided image classification 
has been well documented as another method extensively used to perform soil salinity research. Several studies 
have demonstrated its efficiency in differentiating saline soil and non-saline soil (Panah et al. 1999, 
Melendez-Pastor et al. 2010). However, none of these methods were claimed competent to identify slightly 
salinized soil, moderately salinized soil and intensively salinized soil. In recent years, the emergence of 
hyperspectral sensor and quantitative remote sensing technique seem to provide the ability to solve the problem. 
The capabilities of hyperspectral imagery for salinity mapping have been recently investigated by Ben-Dor et al. 
(2002), Weng et al. (2008) and Dutkiewicz et al. (2009). The techniques such as continuum removal analysis used 
in these studies enable the detection of spectral absorption features and facilitate the modelling processes. By using 
continuum removal analysis, Weng (2010) detected salinity-sensitive bands and constructed salinity spectral index 
(SSI) based on the continuum removed reflectance.  

Quantitative remote sensing technique has also been examined using multi-spectral data (Shrestha 2006, Neild 
et al. 2007). These studies predicted soil salinity by establishing linear and nonlinear models between soil salinity 
and sensitive indices. To the best of our knowledge, few studies have incorporated all bands of muliti-spectral data 
into model establishing process to estimate soil salinity.ALI data has recently been introduced into the studies of 



soil salinity (Bannari et al. 2008). Their results showed that the short wave infrared region (SWIR) of simulated 
ALI data was a good indicator sensitive to slight and moderate saline soils. To the best of our knowledge, models 
for estimating salt salinity were only based in general on laboratory spectrometric measurements and simulated data. 
Applications of field spectrometric measurements remain to be examined. And relatively few studies have 
investigated the possibility of using ALI data for quantitative mapping of soil salinization. In addition, the soil 
surface is not always clear of vegetation coverage, which makes no soil information can be extracted from remote 
sensing images. To estimate soil salinity under vegetated areas, the type and the growing status of vegetation are 
taken into account as indirect indicators (Dehaan and Taylor 2002, Shrestha 2006, Khan et al. 2008). For the area 
covered with a small amount of vegetation, these vegetation-related studies are reluctant to be effective.  

In this study, we focus on estimating soil salinity in a typical area of Yellow River Delta. For this purpose, a 
PLSR model was created between laboratory measured soil salinity and ALI-convolved field spectra. The model 
was then applied to ALI reflectance image to produce soil salinity map of bare soils.  For the vegetated area, 
universal kriging was performed on the basis of 314 samples collected on PLSR-derived soil salinity map. We also 
examined the predictive capability of this combined approach. 
 
2. MATERIALS AND METHODS  
 
2.1 Study Area 
 
The Yellow River Delta is located in Dongying City, Shandong Province of eastern China. A typical study area was 
selected in 118°41′-119°18′ E and 37°11′-38°07′ E, which covers a rectangle region of about 37 km in width and 
106 km in length, corresponding to a scene of ALI image mosaiced with four-image strips (figure 1). Field 
observations show that the sub-district takes on different levels of saline soils, ranging from non-saline to intensive 
saline soils, which makes our study more reasonable. The slight and moderate saline soils are generally distributed 
near the center of the study area, where the Yellow River provides favorable irrigation conditions. The intensive 
saline soils and salinized soils are concentrated in the low-lying and flat terrain near the beach (Tian et al. 2003). 

 
Figure 1. Map of study area with the boundary of ALI image. The area is covered with vegetations such as cotton, 

reed, Suaeda salsa and Tamarix chinensis. The vegetated area was masked based on NDVI. 
 
2.2 Soil Sampling and laboratory analysis 
 
Soil sampling was conducted in clear days in April, 2005. A total of 55 topsoil samples were collected using 
a stratified sampling strategy. Spectrometric measurements were conducted using analytic spectral device 
(ASD) FieldSpec FR spectroradiometer. Three to five measurements were taken on each target. For each 
sampling site, variables such as sampling time, status of vegetation and GPS readings were recorded. The 



samples were air-dried to eliminate adverse influences of moisture and passed through 2-mm sieve to 
remove debris, stones and stubbles. Then they were taken for physico-chemical analysis. The concentrations 
of eight major ions, including K+, Na+, Ca2+, Mg2+, Cl- , HCO3

-, CO3
2- and SO4

2- were measured and the 
final SSC were defined as the total of the above ions. The 55 samples were divided into five classes 
according to national saline soil classification standard of China: nineteen non-saline soil samples with SSC 
< 1 g·kg-1, eight slight saline soil samples with SSC of 1-2 g·kg-1, twelve moderate saline soil samples with 
SSC of 2-4 g·kg-1, ten intensive saline soil samples with SSC of 4-6 g·kg-1 and six salt soil samples of 
SSC > 6 g·kg-1. 
 
2.3 Partial least square regression and Universal kriging 
 
PLSR is a method that specifies a linear relationship between dependent variables and a set of independent 
variables. The general idea of PLSR is to extract the orthogonal variables using principal component 
analysis (PCA) and determine the optimal number of orthogonal variables, accounting for as much variance 
of the dependent variable with the least residuals (Garthwaite 1994). The only dependent variable in this 
work is soil salinity, and thus a univariate PLSR algorithm was adopted. The PLSR modeling was performed 
using the software Unscrimbler (Edition 9.5) developed by CAMO Inc. Spectrometric measurements should 
be examined and processed before they could be used for model establishment. To reduce noises, reflectance 
within water-vapor absorption region was removed and the curves were smoothed with a five-point 
smoothing algorithm. The smoothed spectra were resampled and convolved following FWHM (full-width at 
half maximum) specifications of ALI imagery (http://www.eoc.csiro.au/). Two-thirds of samples were used 
to establish a PLSR model and the remaining samples were reserved for the purpose of model validation. 

Kriging is a technique for estimating values of continuous random spatial variables from data without bias and 
with minimum variance (Webster and Mcbratney 1987). Being different from other interpolation methods, kriging 
takes into account the variables’ spatial correlation to interpolate values in an unknown location. Kriging 
assumes that an estimated value is more likely to resemble the observations nearby than those in a remote 
location. The assumption is based on the fact that the difference of values in two points increases as their 
distance increases. To describe the relationship between difference and distance, semi-variogram should be 
fitted as a plot of semi-variance vs. distance. A set of predefined semi-variance functions can be used to 
determine a semi-variogram such as Gaussian model, spherical model and exponential model. Typically, a 
semi-variogram displays an increase in semi-variance as distance increases (Burgess and Webster 1980). 
When the distance reaches a certain value, the semi-variance remains unchanged. The unchanged 
semi-variance is referred to as sill and the specific distance is referred to as range. It is noted that the semi-variance 
has a positive value when the sample interval approaches zero. This value is usually described as nugget (Oliver 
and Webster 1986). These parameters are determined by semivariance analysis and used for interpolation in the 
further step. 
 
2.4 Image processing 
 
ALI image was collected on April 14th, almost synchronous with the time of field investigation. The data 
was georeferenced to WGS-84 coordinate in terms of GPS readings with a root mean square error (RMSE) of 
0.429 pixels. To match image data to field measured spectra, Empirical Line (EL) algorithm in Envi 4.7 
package was used to perform atmospheric correction with spectrometric measurements of eight ground 
objects. These objects comprise of airport pavements (bright object), bare soils (moderate) and clear 
reservoirs (dark object). The algorithm forces the corresponding DN value to match the calibration samples 



and a linear regression is used to equal DN and reflectance for each band. The calibration was satisfying 
with relative errors of 0.29% - 2.19%. Nonsoil such as vegetation pixels were removed from the reflectance 
image using masks created on the basis of NDVI. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Soil salinity of bare soils 
 
The model was established with R2 of 0.837 and RMSE of 0.747 g·kg-1(figure 2), indicating a good fit 
between the two datasets. To derive a quantitative soil salinity map of the study area, the model was applied 
to ALI reflectance image on a pixel-to-pixel basis. In order to reduce the noises, a low pass filter of 3×3 kernel 
was applied. Statistics of the map show an average SSC value of 4.32 g·kg-1 with the maximum value of 15.62 and 
the minimum value of -5.23. According to the image histogram, appropriately 1.15% soils have negative SSC 
values, which is unreasonable. To quantitatively assess the accuracy of the SSC map, estimated values of 50 
samples were collected on SSC map and compared with the corresponding measured SSC values (figure 2). The 
result shows that the extracted values are strongly correlated with the true soil salinity (R2 = 0.645, RMSE = 0.948 
g·kg-1). 
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Figure 2. (a) Scatter plot of predicted SSC vs. measured SSC. (b)Scatter plot of extracted SSC vs. measured SSC. 

 
3.2 Soil salinity under vegetation area 
 
To detect soil salinity in the vegetated area, 314 samples were systematically collected from the PLSR-derived SSC 
map. These samples include soil enclosed by vegetation and soil close to vegetation area, ranging from 0.795 
g·kg-1 to 10.236 g·kg-1 with an average of 4.394 g·kg-1. Thus, a first-order trend was fitted to represent the general 
distribution of soil salinity in the study area. The detrended dataset is more likely to obey normal distribution. The 
semi-variogram shows that it fitted with spherical model. Parameter estimation and interpolation processes were 
accomplished in ArcGIS geostatistical analysis (GA) module. The magnitude of spatial correlation can be expressed 
by a ratio of nugget to sill. For the semi-variogram established in this study, the ratio of nugget and sill of SSC is 
0.296, suggesting a strong spatial correlation. Based on analysis above, a soil salinity map was interpolated using 
kriging method. Then Soil salinity of vegetated area was cropped from the kriging-derived soil salinity map with 
mask created in advance. The estimated SSC values in the vegetation area range from 1.84 to 7.08 g·kg-1 with an 
average value of 3.09 g·kg-1. Descriptive statistics show that 15.11%, 67.67% and 16.50% of the vegetation area is 
affected with slight, moderate and intensive saline soils, respectively. Only 0.72% of the vegetation area is covered 
with salt soils. The agricultural lands have a typical SSC value of appropriate 2-3 g·kg-1 where salt-tolerant crops 
such as cotton and wheat are cultivated.  
 
3.3 SSC Mapping 



 
Combining PLSR-derived and the kriging-derived soil salinity map, the entire soil salinity map including bare soils 
and vegetated area was produced (figure 3).  

 
Figure 3. Soil salinity map produced with PLSR and UK combined method. 

Descriptive statistics show that 1.03% of the soils have negative SSC values, which are generally classified as 
non-saline. About 5.55% of the study area is not affected with salt, and 10.25% of the area is slightly salinized, and 
31.37% is moderately salinized. The three types of soils comprise the majority of agricultural lands. The soils with 
SSC value between 4 and 6 g·kg-1 reaching as much as 35.00% of the entire area, are dominantly located near the 
coastal area where the groundwater table is high and seawater provides plenty of salt resources. The rest of the area 
is salt soils with SSC values higher than 6 g·kg-1, accounting for 17.83% of the study area. Most of these soils occur 
in the area regularly saturated with seawater, for instance, saltpans, dried seawater aquacultural ponds and mudflat. 
 
4. CONCLUSIONS 
 
The PLSR model was established between soil salinity and ALI-convolved field spectra with R2 of 0.837 and 
RMSE of 0.747 g·kg-1. Transferring the model to ALI reflectance image shows a satisfying result between 
predicted SSC and measured SSC (R2=0.645, RMSE=0.948 g·kg-1). To estimate soil salinity under vegetated 
area, a universal kriging method was performed on the basis of 314 soil samples collected on the PLSR-derived soil 
salinity map. Statistics of cross validation indicate that the result of universal kriging interpolation was promising. 
The spatial distribution under vegetated area shows coherent spatial patterns with higher soil salinity in eastern 
coastal area and lower soil salinity in inland area. This paper provides a new approach to estimate soil salinity in the 
area with sparse vegetation and young plants. By using this approach, it is convenient and inexpensive to obtain soil 
salinity information in an entire area. Based on soil salinization under vegetation area, the authorities will have 
sufficient evidence to guide agricultural development.  
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