
VEGETATION ANOMALIES DETECTED BY 
TIME-SERIES MODIS OBSERVATION 

 
Yang-Sheng Chiang*1 and Kun-Shan Chen2 

1 PhD Student. Institute of Space Science, National Central University. 300, Jhongda Rd., Jhongli, Taoyuan 32001, 
Taiwan; Tel:+ 886-3-4227151#57679; E-mail: aschiang@csrsr.ncu.edu.tw 

 
2 Professor. Center for Space and Remote Sensing Research. National Central University. 300, Jhongda Rd., Jhongli, 

Taoyuan 32001, Taiwan; Tel: +886-3-4227151#57617; E-mail: dkschen@csrsr.ncu.edu.tw 
 
 
KEY WORDS: Vegetation Anomaly Index, MODIS, NDVI, Vegetation Phenology 
 
ABSTRACT: Vegetation cover plays an important role in regulating the global climate by serving as the primary 
carbon pool for atmospheric carbon dioxide. Deforestation and forest degradation could pose a serious threat on the 
global emission of greenhouse gases, and this has been declared as the critical issue for United Nation’s REDD 
programme. The study of vegetation dynamics and phenologic state, which traditionally relies on systematic field 
survey, could benefit from the long-term archive and analysis of remote sensed data. With more than ten years of 
observations, Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites 
provides a reliable and consistent data source for monitoring of global biosphere. This study used time-series 
MODIS NDVI as the primary spectral indicator for monitoring of forest health and detection of vegetation anomaly. 
Based on ten-year dataset (2001-2010), NDVI reference and its annual variation were constructed for every 16-day 
data periods, while vegetation anomaly index (VAI) was measured as the NDVI difference (between reference and 
target images) normalized by the corresponding NDVI variation. With time-series analysis of VAI, we identified 
regions with abnormal spectral response, including land use changes (afforestation and agriculture expansion) and 
several major vegetation anomaly cases in Taiwan, with identified events such as drought spells in 2002, landslides 
following typhoon Morakot in 2009, and burn scars devastated by Alishan wildfire in 2009. Depending on the 
phenologic state and severity of these natural hazards, vegetation regrowth typically takes less than 1 month for the 
drought events, 2-4 months for the wildfire, and 3 months to over 1 year for landslides. Given cloud effect as the 
primary uncertainty sources for optical remote sensing, temporal slope of NDVI was used as the indicator for 
removal of false alarm (vegetation anomaly) as a result of atmospheric effect. Meanwhile, constraints for VAI as an 
anomaly indicator were discussed in this study.  
 
1. INTRODUCTION 
 
Satellite remote sensing has been used in forest studies as a method for monitoring the earth’s terrestrial 
photosynthetic vegetation activity in support of phenologic and biophysical interpretations.  It complements field 
survey and provides a reliable data source for derivation of forest structural parameters such as leaf area index 
(LAI), canopy height, above-ground biomass, and functioning measures such as primary productivity and 
evapotranspiration. Forest health managements, however, could also benefit from remotely sensed information 
covering vegetation mapping, invasive plant detection, fire fuel mapping, wildfire monitoring, post-fire burn area 
and severity mapping, insect infestation mapping, and canopy or foliar water stress. Studies have been conducted 
on a regional to global scale depending on the discipline in interest and data acquired in terms of their spatial, 
spectral, and temporal resolution. 
 
With routine data acquisition (1-2 day global coverage) and calibration, MODIS provides a consistent and reliable 
data source for spatial and temporal comparisons of global vegetation conditions. The long-term archive and 
cost-effective data sources are also the prerequisite for anomaly studies if on a temporal basis. Among numerous 
vegetation indices, NDVI is the most commonly used for vegetation studies, and has a strong correlation to the 
presence and density of green vegetation. MODIS NDVI can be referred to as the continuity index for 
NOAA-AVHRR derived NDVI (1981-present), with enhanced spatial resolution for terrestrial application. It has 
been used extensively for detection of land cover/use change, green census, hazard monitoring, and forest health 
studies.  
 
This study used MODIS NDVI as the potential indicator for monitoring of vegetation vigor and forest health in the 
forestland of Taiwan. Time-series archived MODIS data provide basis for operational monitoring of vegetation 
anomalies in support of the forestland management, while anomaly is defined as the presence of substantial 
departure of NDVI from its annual mean, when under similar phenologic state and environmental gradient. 
Specifically, the proposed method and data acquired will be explained first, followed by the results of detected 
island-wide anomalies (2001-2010). Subsequently, we focused on time-series NDVI response of vegetation with 
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respect to several natural disturbances in the recent history of Taiwan.  
 
2. METHODOLOGY 
 
2.1 Normalized Difference Vegetation Index and MODIS VI Product 
 
The study primarily used Terra MODIS vegetation index (MOD13Q1) product for construction of phenologic 
NDVI baseline and detection of vegetation anomaly. MOD13Q1 is calculated based on surface reflectance of the 
red and near infrared channels, which are corrected for molecular scattering, ozone absorption, aerosol optical 
thickness, and adjusted to nadir with use of a BRDF model, as input to the NDVI equations: 
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where 
ρNIR: reflectance of the near infrared channel(841-876nm) 
ρRed: reflectance of the red channel(620-670nm). 
 
MOD13Q1 has 250m spatial resolution, and is derived at 16-day intervals with cloud screening procedure and 
maximum value compositing technique (MVC). Both the composite day and pixel reliability are also included in 
the data product. MVC characterize the highest NDVI observed in the data period. Since the influences of residual 
cloud and longer optical path length tend to lower NDVI, MVC could select the least atmospheric-contaminated 
and most near-nadir view observation within the compositing cycle. Such normalization procedure is critical for 
change detection and anomaly studies based on multi-temporal images. 
 

 
Figure 1 MOD13Q1 NDVI between 2010/12/19-2011/1/3 

 
2.2 Vegetation Anomaly Index 
NDVI is changing with different phenologic state and vegetation density. NDVI disparity in the spatial domain may 
simply indicate different vegetation composition or structure, and intra-annual (seasonal) difference may be a result 
of vegetation status between growing season and senescent month. Both should not be termed anomaly. Vegetation 
anomaly has been defined, specifically, as the significant change of vegetation vigor due to sporadic events, either 
naturally or anthropogenically-induced. Such change of vegetation vigor is expressed as the inter-annual difference 
of NDVI, with temporal (seasonal) and spatial coincidence.  
 
With 23 data series for each year (16-day interval), and 10 years of data archive (2001-2010), a 2-D matrix of 
NDVI could be constructed in the temporal domain. NDVI reference and its annual variation were calculated for 
every 16-day data periods as: 
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where  
NDVIij: NDVI of the jth data period in ith year. 
                                      
Vegetation anomaly index (VAI) was measured as the NDVI difference (between reference and target images) 



normalized by the annual variation of NDVI as: 
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VAI can be seen as the signal to noise ratio, where NDVI difference is the signal we need for anomaly detection. 
Since NDVI is not a physically measurable parameter (e.g. LAI), but a relative description of the vegetation density, 
the normalization procedure gives VAI the statistical meaning required for anomaly detection. In the meantime, the 
normalization sheds its light not just on the decrease of false alarm, but on the increase of detection rate. For 
example, croplands used to present highly inter-annual NDVI variations due to slight shift of seasonal production 
cycle. Since such variation is normal, the potential large absolute difference of NDVI should not be termed anomaly. 
Thanks to the normalization process, this large difference could be balanced by its corresponding large variations. 
Another example is the application of VAI on the natural environment, which is characterized by stable seasonal 
cycle and smaller inter-annual NDVI variations. The slight decrease of NDVI triggered by some natural hazards (eg. 
drought, insect infestation), which shows no dramatic transform of local landscape, could not be easily seen if 
simply based on subtle NDVI difference. However, the normalization could enhance this contrast of anomaly signal 
and increase the detection rate. 
 
2.3 Removal of False Alarm Due to Residual Clouds 
 
In the MOD13Q1 VI data flow, variations associated with external influences (atmosphere, view and sun angles, 
clouds) have been accounted for in the upstream processing of reflectance products and in its MVC procedure. 
However, residual clouds and aerosol effects still pose major uncertainties for retrieved NDVI. A post-processing of 
cloud effects is necessary not just for the detection of vegetation anomaly, but for the decreasing of false alarm. 
Given the presence of residual clouds tends to lower NDVI and is usually randomly distributed, it shows no 
consistency in the temporal domain. A sudden drop and increase of NDVI could be identified in the time-series 
NDVI. We used temporal slope of NDVI as the potential indicator for search of cloud contaminated pixels (eq.5). 
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where 
ti,j: composite date (Julian day) of the jth data period in ith year. 
 
A temporal mask was applied to VAI with consideration of NDVIi,j-1′and NDVIi,j′. The threshold was set at -0.006 
and 0.006 respectively, based on the minimum/ maximum NDVI slope from the farm field. However, for 
implementation of this temporal mask, it will require 3 consecutive observations, which is challenging for some 
part of the lands and seasons. Therefore, a backup procedure is initiated, such that if neighbored period (j-1, j+1) 
presents no data (due to the presence of heavy cloud), the other period (j-2, j+2) would be used for calculation of 
this temporal slope. However, with prolonged period and potential NDVI variation, a more stringent threshold is 
applied (-0.004 and 0.004 respectively).  
 
2.4 Detection of Vegetation Anomaly and Anomaly Event 
 
For identification of anomaly event, which involves discrete discrimination between normal and abnormal 
situations, thresholds for its intensity (expressed as VAI) and span period need to be determined. However, different 
anomaly events may introduce different NDVI response. For example, drought may cause a prolonged anomaly 
period, but may not introduce significant NDVI difference when compared to anomaly triggered by floods. The 
determination of such threshold values is critical not just for the decrease of false alarm, but also to retain the 
detection rate of anomaly events. Therefore, multiple sets of thresholds have been determined for the identification 
process, such that 
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where 
A: vegetation anomaly in the negative sense, and AE: identified anomaly event (Table 1).  
 
The buffer interval between 2m+1 and k is to consider the situation where no NDVI is retrieved within the span 
period, and significance of NDVI difference is derived based on the assumption of normal distribution among 
inter-annual NDVIs. 



Table 1 threshold for vegetation anomaly and detection of anomaly event 
scenario   ρ0   significance of NDVI difference     m               k          comments on detected anomaly 

1    -0.85            80.23%               3          5            long-lived, low intensity 
2    -1.04            85.08%                                       moderate intensity 
3    -1.65            95.05%               2          3            short-lived, high intensity 

 
3. RESULTS AND DISCUSSIONS 
 
3.1Annual Vegetation Anomalies 
 
With time-series NDVI and VAI, vegetation anomalies for the negative departure (VAI ≦-1.04) and positive 
departure (VAI ≧1.04) from NDVI reference were illustrated in Fig. 2, where number of data periods showing 
anomalies were expressed in the spatial dimension. Since anomalies were detected independently in the spatial and 
intra-annual domain, aggregation of abnormal pixels along with prolonged period would enhance our confidence of 
detected anomalies, and these aggregated anomalies were even more likely to result from an identical or similar 
trigger(s). However, the identification of anomalies is straightforward, but the interpretation of it is even more 
involved. Several features could be utilized to enhance our awareness for the identified anomalies. We specifically 
chose two natural disturbances in the recent history as studied cases. 
 

 
Figure 2 number of data periods presenting vegetation anomaly for the negative departure (upper: VAI ≦-1.04) and 

positive departure (lower:VAI ≧1.04) from 2001 to 2010 
 
3.2 Case Studies of Anomaly Events 
 
3.2.1 Drought in 2002 
 
Drought is one of the major natural hazards in Taiwan. The severity could be explained by time-series mapping of 
its extent and corresponding duration. It is usually characterized by slight NDVI decrease and temporal slope, and 
such subtle NDVI difference could be enhanced by the normalization process in our VAI calculation. Fig. 3 shows 
time-series response of NDVI in 2002 along with 10-year average and ±1 standard deviation. The interval of 
identified anomaly event (scenario 1) is marked by the dash blue line in the upper part of the figure. Meanwhile, a 
typical example of residual cloud effect can be seen at DOY 321 data period, in which a sudden drop and increase 
of NDVI can be easily identified.  

 
Figure 3 time-series NDVI in 2002 and 10-year average 

 
The spatial extent of drought is coincident on the one side with isohyets at 250mm based on accumulated 
precipitation between 2001/10-2002/4 (Fig.4-5). The data were recorded and interpolated from measurements of 
more than 380 island-wide ground stations. The other side of VAI, which shows no correspondence with 



accumulated rainfall, is where the farmlands reside. Crop production in the western plain is typically supported by 
the irrigation system refilled from the reservoir in central mountain range. Therefore, unlike upland regions nearby, 
it shows no immediate response to the on-site precipitation shortage. Meanwhile, the cropland is characterized by 
higher NDVI variation in the seasonal domain, and this is depicted at Fig. 6 where intra-annual deviation were 
calculated based on 23 NDVI series in 2001. 

                             
Figure 4 VAI of 2002097   Figure 5 accumulated precipitation  Figure 6 standard deviation of intra-annual NDVI 
 
3.2.2 Alishan Wildfire in 2009 
 
Compared to drought, wildfire is usually a short-lived disturbance. However, it has profound influence in regard to 
changes of vegetation density and composition. The conversion and evolution of the local landscape, typically is 
symbolized by significant changes of spectral signature and NDVI. This phenomenon has been illustrated in Fig. 7 
for the fire incidence in Alishan region back on 2009/1/12 (DOY 17), where the duration of identified anomaly 
event (scenario 1 and 3) are signified by the dash blue and red lines. In this case, burn scars were mapped as 139.8 
ha (based on post-fire aerial photos), and the spectral response (red and near infrared regions) took only about 3.5 
months to recover, since post-fire vegetation regrowth was accelerated with the help from local officials. A cross- 
check of the incidence has also been done with MODIS fire alert derived from MOD14A2 thermal anomaly product 
(Fig.8). 

 
Figure 7 time-series NDVI in 2009 and 10-year average       Figure 8 MOD14 thermal anomaly and VAI 
 
3.3 Discussions 
 
In this study, VAI has been developed to facilitate monitoring and interpretation of vegetation growth, drought, and 
wildfire dynamics. We specifically used NDVI, instead of physical characteristics, as our indicator for regular 
assessments of forest health. This is because NDVI is the direct spectral response of vegetation vigor, rather than 
derived parameters (eg. LAI, primary productivity) relied on physically/physiologically-based model or regression 
analysis. Even though the use of canopy parameter and its interpretation would be straightforward, the uncertainty 
from its derivation might further be introduced to the anomaly studies. In spite of this, some concerns of NDVI and 
MODIS MVC scheme associated with our anomaly studies still need to be clarified. For example, NDVI is 
confronted with saturation problems, whereby NDVI remains invariant to changes in the amount and condition of 
green biomass in densely vegetated canopies. This is attributed to the high sensitivity of NDVI to the chlorophyll 
absorption band. Such phenomenon may also imply that our derived VAI might not be sensitive enough to detect 
the subtle change of vegetation in dense forest. Fortunately, potential false alarm may also be reduced with the 
benefit from this radiometric buffer zone. 
 
From remote sensing approach, the detection rate is associated with temporal and spatial resolution. Fine-scale or 



short-lived anomaly may not be detectable based on 16-day compositing and 250m NDVI dataset. MVC technique 
selects the maximum NDVI as the candidate for compositing cycle. However, the signal from short span event (eg. 
flood) is marked by low NDVI, and is more unlikely to be chosen as this candidate. Therefore, loss of alarm is to be 
expected, and this is compromised with the capability to detect anomalies on a nation-wide and 10-year scale. 
 
What ecologists concern about is the change of vegetation condition in response to natural disturbance. We are 
more interested in the negative departure of NDVI from its average value. However, since VAI is just a statistical 
approach for identification of vegetation anomaly, we have to take into account the timing of this disturbance and 
the rehabilitation process following vegetation degradation. For example, some major disturbances (eg. landslide) 
may have a profound influence, or introduce permanent changes on the local landscape. It may take a much longer 
time to recover to its original condition (with respect to the statistical period). If such incidence occurs at the early 
stage of the statistical period, what we detect should be the positive departure of NDVI value, and the timing for 
occurrence of this incidence should be the end of this positive departure, rather than the starting point of vegetation 
anomaly. Therefore, the interpretation of detected anomaly is even more involved. Fortunately, it is not confronted 
with the confidence of our detected anomalies. 
 
4. CONCLUSION 
 
This study has developed an anomaly detection method to assess vegetation degradation and rehabilitation, and to 
incorporate climate and remote sensing parameters into evaluation of anomaly events. In our 2-dimensional NDVI 
matrix, the inter-annual domain has been used to construct NDVI reference, and vegetation anomaly index (VAI) 
was established to account for the significance of NDVI difference with its own statistical meaning. The 
normalization process in VAI derivation has special meanings not just for the decrease of false alarm, but for the 
increase of detection rate. Therefore, it could be used to detect slight anomaly cases marked by slight NDVI 
decrease (eg. drought), such will be challenging if simply based on visual interpretation or traditional classification 
procedure, since vegetation density and land cover pattern presents no significant changes. While in the 
intra-annual domain, time-series NDVIs were used for the removal of false alarm associated with residual cloud 
contamination, and for the identification of anomaly event. Given different anomaly events may introduce 
dissimilar NDVI response in terms of their change magnitude and span periods, multiple thresholds were set for the 
detection of various vegetation anomalies.  
 
Atmospheric contamination is a major concern for optical remote sensing of land. In this anomaly study, we applied 
three steps for removal of atmosphere-induced false alarms. Cloud-flag embedded in MOD13Q1 data product 
offers the first screening of cloud/aerosol contaminated pixels, while residual clouds may still be present in the 
brink of these removed pixels. Given the presence of residual clouds tends to lower NDVI and is randomly 
occurred, it shows no consistency in the temporal domain. Temporal slope of NDVI was used as a robust indicator 
for search and removal of false alerts attributed to the cloud effects. Meanwhile, unlike cloud contamination, 
vegetation anomalies present spatially and temporally coincidence. Therefore, the threshold for their span periods 
gives another capability to reduce the chance for cloud alarm. 
 
Long history of data archive is a prerequisite for ecosystem anomaly studies. Detection of vegetation anomalies and 
its dynamics depends on the reliability of reference dataset. Statistically, it implies that solid data archive is 
necessary for such application. The proposed VAI and anomaly detection method could apply to other long-standing 
dataset, such as NOAA-AVHRR and Landsat series data. It could not just increase the reliability of anomaly 
detection, but enrich the studies of forest dynamics back to 1980s. 
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