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Abstract: With the aim of developing a model for estimating building damage from synthetic aperture radar (SAR) 
data at L-band, which is appropriate for Peru, we propose a regression discriminant function based on field survey 
data in Pisco, which was seriously affected by the 2007 Peru earthquake. The function can discriminate damage 
ranks corresponding to the severe damage ratio of buildings using ALOS/PALSAR imagery of the disaster area 
before and after the earthquake. By calculating the differences in and correlations of backscattering coefficients, 
which were explanatory variables of the regression discriminant function, we determined an optimum window size 
capable of estimating the degree of damage more accurately. A normalized likelihood function for the severe 
damage ratio was developed based on discriminant scores of the regression discriminant function.  
 
 
INTRODUCTION  
 
Satellite remote sensing is being increasingly used for quick assessment of the impact of natural disasters occurring 
frequently all over the world (International Charter Space and Major Disaster, 2012). A synthetic aperture radar 
(SAR), a type of remote sensing sensor, can observe the surface of the earth in the daytime and nighttime, 
regardless of weather. If visual interpretation of damage from SAR imagery is practicable, it will complement the 
visual interpretation from optical sensor imagery. However, unlike optical sensor images, which look like 
photographs, SAR imagery is a representation of the intensity of backscattering of microwaves from the ground 
surface and is unfamiliar to nonexperts. It is therefore difficult to visually interpret damage from SAR images by 
volunteer-based many interpreters, namely, crowdsourcing (Ghosh et al., 2011). It is thus expected that extraction 
of damage from SAR imagery will be done by computer-based image processing (Arciniegas et al., 2007; 
Midorikawa and Miura, 2010). Therefore, estimation models for building damage ratios were proposed (Ito and 
Hosokawa, 2002; Matsuoka and Yamazaki, 2004; Nojima et al., 2006). They were based on C-band (wavelength: 
approximately 5.7 cm) SAR imagery in which building damage data obtained from detailed field surveys conducted 
after the Kobe earthquake in 1995 were used as ground-truth data, and applicability of one of the models used for 
damage extraction in other earthquakes occurring in various countries and regions was investigated (Matsuoka and 
Yamazaki, 2010). Furthermore, the model was improved so that it was also applicable to imagery obtained by 
JERS-1/SAR and ALOS/PALSAR (hereafter referred to as PALSAR imagery), which are L-band (wavelength: 
approximately 23 cm) SAR mounted on Japanese satellites. It was then applied to PALSAR imagery obtained at the 
2007 Peru earthquake and the 2008 Wenchuan, China earthquake (Matsuoka and Nojima, 2010). It was found from 
comparison with damage assessment reports of these earthquakes, etc., local damage areas could not be detected 
because the model was based on the ground-truth data of the 1995 Kobe earthquake. In other words, it was 
demonstrated that application of the model to other countries and regions, which have different urban structures, 
building types, and damage situations from Japan, gave inaccurate results (Matsuoka and Nojima, 2010).  

Following procedures reported in our previous papers (Nojima et al., 2006; Matsuoka and Nojima, 2010), 
this paper aims to develop a model for estimating the severe damage ratio of buildings that reflects the building 
types and damage situation in Peru. It can be said that the model is an estimation model for severe damage ratio 
optimized for Peru, because it is based on PALSAR imagery of Pisco at the 2007 Peru earthquake and on the 
building damage data obtained from field surveys. To be more specific, an optimum window size for image 
processing was determined and a normalized likelihood function for the severe damage ratio was derived.  
 
 
PALSAR IMAGES AND FIELD SURVEY DATA 



 
Indices obtained from PALSAR imagery and image processing  
 
On August 15, 2007, the Peru earthquake measuring M8.0 occurred, the epicenter of which was 40-km northwest of 
Chincha. The city of Pisco in the Ica Region and the surrounding area were devastated by the earthquake; more than 
500 people died or were missing and more than 35,000 buildings were completely destroyed. About 2 weeks after 
the earthquake, PALSAR imagery of the coastal area with high resolution was obtained. Figure 1 (a) and (b) shows 
images obtained before and after the earthquake (before: July 12, 2007; after: August 27, 2007). The nominal 
ground resolution was approximately 10 m and the pixel size of images was 12.5 m. 

Two indices, differences (between post- and pre- earthquake images) and correlation coefficients of 
backscattering coefficients, were calculated from the pre- and post-earthquake PALSAR images. Following 
accurate positioning of both the post- and pre-event images, a speckle reduction filter is applied to each image (Lee, 
1980). Then, differences and correlation coefficients are calculated from the following equations (1) and (2). The 
difference is obtained by subtracting the average value of the backscattering coefficient within an N × N pixel 
window of the pre-event image from that of the post-event image. The correlation coefficient is also calculated 
from the same N × N pixel window. The analysis result from the Kobe earthquake showed that differences (after – 
before) yielded negative values, with the spatial distribution of backscattering coefficients decreasing with building 
damage and as compared with that in pre-event, resulting in an overall decrease in correlation coefficient 
(Matsuoka and Yamazaki, 2004). 
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where d represents the difference in backscattering coefficients [dB], r is the correlation coefficient, and N is the 
number of pixels within a window to be calculated. Iai and Ibi represent the i-th pixel values of the post- and pre-
event images, respectively, and Īai and Ībi represent the average values of N × N pixels surrounding the i-th pixel. 
 
 

 

 

Figure 1: PALSAR imagery obtained before and after the 2007 Peru earthquake: (a) July 12, 2007; (b) August 27, 
2007. 

 



Severe damage ratio of buildings based on the field survey data 
 
The target area of the damage estimation model is the city of Pisco. Damage data used in this study were collected 
by members of the Japan-Peru Center for Earthquake Engineering and Disaster Mitigation (CISMID), National 
University of Engineering, Peru, who performed on-site investigation of buildings in more than 10,000 lots in detail 
just after the earthquake (Estrada et al., 2008) and were considered to be the most reliable data on the Peru 
earthquake. Investigation items included building lot codes, building use, structure types, floor number, and damage 
level, all of which were combined with geographic information system (GIS) data. Approximately 97% of buildings 
in the area were masonry structures (about 18% of which were adobe structures and about 79% of which were burnt 
brick structures), which have low toughness and are prone to collapse in general. In the earthquake, adobe structure 
buildings were greatly damaged. A lot and a building were mostly in a one-to-one correspondence; when multiple 
buildings were located in a large lot, information on the most damaged building was recorded. Figure 2 (a) shows 
the distribution of damage level by lot based on the field survey in Pisco. 

Damage level was classified into the following four levels: Grave (Serious), Severo (Severe), Leve 
(Slight), and Sin daño (No-damage); lots that could not be investigated were represented as “Not available.” Grave 
corresponds to G5 in the classification of the European Macroseismic Scale (EMS-98) (Grünthal, 1998), Severo to 
G4 and G3, Leve to G2, and Sin daño to G1. Based on these GIS data, the damage ratio was calculated. In order to 
take size of lots and vacant lots into consideration and to calculate reliable damage ratio, the city of Pisco was split 
into a grid of 3.75 × 3.75 arc-seconds (approximately 120-m mesh) and estimation was performed only on grids 
with 10 or more lots. The severe damage ratio of buildings in a grid was calculated as the ratio of the number of 
Grave to the total number of buildings in the grid. The severe damage ratio was classified into the following six 
damage ranks: C1, 0% severe damage ratio in a grid; C2, more than 0% and less than 6.25%; C3, 6.25% or more 
and less than 12.5%; C4, 12.5% or more and less than 25%; C5, 25% or more and less than 50%; and C6, 50% or 
more. Table 1 shows the correspondence between the damage rank, the severe damage ratio and the median values. 
The distribution of the severe damage ratio is shown in Figure 2 (b). 
 

Table 1: Range of the severe damage ratio and the median values for each damage rank 
 

Damage Rank Severe Damage Ratio D (%)  Median Value (%) 
C1 D  0 0.0 
C2 0  D  6.25 3.13 
C3 6.25  D  12.5 9.38 
C4 12.5  D  25 18.75 
C5 25  D  50 37.5 
C6 50  D  100 75.0 

 
 

 

 

Figure 2: Building damage data in Pisco based on the field survey. (a) Damage level by lot (Estrada et al., 2008). 
(b) Distribution of the severe damage ratio. 



 
 
ESTIMATION OF SEVERE DAMAGE RATIO BASED ON REGRESSION DISCRIMINANT FUNCTION 
 
The influence of window size on the accuracy of damage discrimination 
 
In previous studies (Matsuoka and Yamazaki, 2004; Nojima et al., 2006; Matsuoka and Yamazaki, 2010; Matsuoka 
and Nojima, 2010), a speckle reduction filter with a 21 × 21 pixel window was applied to SAR images and the 
differences and correlation coefficients were calculated from a 13 × 13 pixel window. Although these window sizes 
suited extraction of the damaged area from 30-m resolution SAR imagery of an area affected by the Kobe 
earthquake and field survey data in the Hanshin area (Matsuoka and Yamazaki, 2004), it was uncertain whether the 
window sizes would be the optimum for extraction of damage in a city in Peru, in which building types are different 
from those in the Hanshin area, with approximately 10-m resolution, which is the same with the resolution of 
PALSAR imagery. Accordingly, the change in the accuracy of damage discrimination was examined with varying a 
speckle reduction filter size and calculation window size for data sets of Pisco. 

First, the influence of speckle reduction filters was examined. A Lee filter size that is variable from 3 × 3 
to 51 × 51 pixels was applied to the pre- and post-event images and the differences and correlation coefficients 
were calculated based on equations (1) and (2). The images of the differences and the correlation coefficients were 
overlaid on the field survey data and 800 pixels were randomly extracted from areas corresponding to each of the 
six damage ranks shown in Table 1 (4,800 pixels in total) to create a training sample. For a quantitative evaluation 
of the severe damage ratio, regression discriminant analysis (Okuno et al., 1981), a method of multiple-group 
discriminant that uses the differences and the correlation coefficients of the six damage ranks, was applied. For 
calculation of the differences and the correlation coefficients, window sizes of 7 × 7, 13 × 13, and 21 × 21 pixels 
were examined. Figure 3 shows the correlation ratio of regression discriminant functions representing the ability to 
discriminate six damage ranks against the pixel dimension calculated from the size of a speckle reduction filter. In 
this figure, a larger correlation ratio means a better discriminant ability of damage ranks. The relationship between 
the pixel dimension and the correlation ratio is slightly complicated; as the size of the filter increases, the 
correlation ratio decreases but turns upward at around 15 × 15 pixels. However, the correlation ratio obtained when 
the filter size is increased to the largest one, 41×41 pixels, is almost the same as that obtained without any filter; 
therefore it was determined that no filter would be used in this study. 

 

 
 

Figure 3: Relationship between the size of speckle 
reduction filters and the correlation ratio 

 
 

Figure 4: Relationship between the calculation window 
size and the correlation ratio 

 
Next, the influence of window size on the accuracy of discrimination was examined. With varying window 

size, from 3 × 3 to 51 × 51 pixels, used for calculation of the differences and the correlation coefficients, the 
correlation ratio of regression discriminant functions was calculated. Figure 4 shows the correlation ratio against the 



pixel dimension calculated from the window size. As the window size increased from 3 × 3, the correlation ratio 
increased and reached a limit at around 13 × 13 pixels. This tendency was also found for data sets in the Hanshin 
area before and after the Kobe earthquake (Matsuoka and Yamazaki, 2004). The reasons why the correlation ratio 
increases includes that damaged building groups spread to some extent and, in addition, backscattering of each 
damaged building has a spatial extent. It is interesting that although the pixel size of SAR images in the Hanshin 
area and Pisco are different, the window size at which the correlation ratio reached a limit was the same, around 13 
× 13 pixels. Although this is considered to arise from complex factors such as the fact that different damage 
situations are involved, the detail remains a challenge to be addressed. It should be noted that although the 
correlation ratio reached a maximum in Figure 4 when 21 × 21 pixels were used, the value is almost the same as 
that of 13 × 13 pixels; the window size of 13 × 13 pixels, which was used in the previous study, will be used in this 
study. 
 
Derivation of regression discriminant function and likelihood function 
 
For calculation of difference d and correlation coefficient r, a window size of 13 × 13 pixels was adopted as an 
optimum window size for interpretation of damage in Pisco based on analysis of the data sets, and no speckle 
reduction filter was used. Figure 5 shows a scatter diagram by damage rank. A regression discriminant function was 
calculated from the two indices is shown in equation (3): 
 

ZRp  0.089 d 2.576 r       (3) 

where ZRp represents the discriminant score derived from PALSAR imagery. While coefficients of d and r in the 
discriminant score ZRj derived from JERS-1/SAR imagery of the Kobe earthquake were −1.277 and −2.729, 
respectively (Matsuoka and Nojima, 2010), the coefficients derived here from PALSAR imagery of Pisco were −
0.089 and −2.576. Coefficients of d and r indicate the degree of influence of d or r on the discriminant score. 
Comparison between the Hanshin area and Pisco demonstrated that the coefficients of r, the correlation coefficient, 
were almost the same in the two regions, but the coefficient of d, the difference in backscattering coefficients, of 
Pisco was small, or approximately zero, as compared with that of the Hanshin area. It can thus be said that the 
influence of d on discrimination of damage rank in Pisco is not so large. 

Next, following similar procedures to those in the previous study (Nojima et al., 2006; Matsuoka and 
Nojima, 2010), a likelihood function for estimating the severe damage ratio from the discriminant score ZRp is 
formed. The likelihood function in this study means the probability of being in each damage rank when ZRp is 
given. Specifically, the frequency distribution of ZRp of 800 randomly extracted pixels from each damage rank is 
modeled as a normal distribution. Figure 6 shows normal distribution models (likelihood function). Table 2 shows 
the average values and standard deviations of ZRp for each damage rank. The higher the damage rank, the larger the 
discriminant score, ZRp. However, because the distribution curves of some damage ranks cross in regions with low 
discriminant scores, discrimination in areas with low damage ranks is impossible. Figure 7 shows normalized 
likelihood functions, in which the sum of the likelihood of all damage ranks in Figure 6 would become 1. For the 
regions where ZRp is −2.2 or under, a constant value obtained by extrapolating the value at ZRp = −2.2 is used in 
order to avoid a reversal of sequence of the severe damage ratio caused by the distribution curves crossing. The 
average values and standard deviations of the estimated severe damage ratio against the discriminant score ZRp can 
then be obtained from the median values of the damage rank in Table 1 and the distribution shown in Table 2 and 
Figure 7. Figure 8 shows curves of the average values and the average values ± standard deviations of the severe 
damage ratio estimated from ZRp. The severe damage ratio increases with increasing ZRp. Because the discriminant 
score was adjusted to make the constant term be zero, relative positions on the horizontal axis in Figure 8 are 
arbitrary. Taking this into account, the normalized likelihood function derived from the field survey data and 
PALSAR imagery of Pisco gives a high severe damage ratio (average value) in regions with low discriminant 
scores compared with that derived from the field survey data and JERS-1/SAR imagery of the Hanshin area 
(Matsuoka and Nojima, 2010) (shown in Figure 8 together). It also indicates that small changes in backscattering 
characteristics have a large influence on the estimation of the severe damage ratio. It could be influenced by the 
differences in building damage situations between Pisco and the Hanshin area. 

 



 

 

Figure 5: Relationship between the differences in backscattering coefficients and correlation coefficients for each 
damage rank 

 

 

 

Figure 6: Normal distribution model of frequency distribution of the discriminant score ZRp 
 
 

Table 2: Average values and standard deviations of likelihood function of data on PALSAR intensity imagery 
 

Damage Rank Average of ZRp  Standard Deviation 
C1 -1.470 0.323 
C2 -1.355 0.291 
C3 -1.332 0.281 
C4 -1.200 0.331 
C5 -1.052 0.415 
C6 -0.887 0.484 

 



 

 

Figure 7: Normalized likelihood function of the discriminant score ZRp 

 
 

 

 

Figure 8: Relationship between the severe damage ratio (average values and standard deviations) and the 
discriminant scores of Pisco ZRp and Hanshin ZRj 

 
 

Figure 9 shows the ZRp distribution obtained from pre- and post-earthquake PALSAR images and Figure 
10 shows the severe damage ratio (average values) estimated from ZRp. ZRp values and the severe damage ratio are 
slightly large at the center of Pisco. It should be noted that the target area is restricted to urban areas where the 
cardinal effect can be expected; therefore, areas whose backscattering coefficients are small (−5 dB or under) in the 
pre-event images are masked. The distribution of severe damage ratio in Pisco city estimated based on PALSAR 
imagery is in good agreement with the field survey data. However, areas with high severe damage ratios are found 
in sections of farmland because they are not adequately masked owing to variations in backscattering characteristics 
caused by vegetation. 
 
 
CONCLUSIONS 
 
To develop a technology to quickly assess areas affected by earthquakes using imagery of L-band synthetic aperture 
radar (SAR) mounted on satellites, an estimation model of severe damage ratio of buildings, optimized for Peru, 
was created based on field survey data and PALSAR imagery of the city of Pisco struck by the 2007 Peru 
earthquake. Regression discriminant analysis was performed, in which the explanatory variables, namely 



differences and correlation coefficients, were calculated from pre- and post-earthquake PALSAR images. The 
target groups included six damage ranks that were classified based on the severe damage ratio of buildings. 
Examination of an optimum window size for calculation of the differences and correlation coefficients resulted in 
the same parameter as that obtained from data from the 1995 Kobe earthquake. A regression discriminant function 
was derived that takes into consideration urban structures, building types, the damage situation in Peru, and pixel 
resolution of PALSAR imagery. Furthermore, normalized likelihood functions for the severe damage ratio were 
obtained from the discriminant score of the regression discriminant function. If an earthquake occurs in Peru in the 
future, the model proposed in this study can be used for damage assessment. 
 

 

 
Figure 9: Discriminant score ZRp estimated from 

PALSAR imagery 
 

 

 
Figure 10: Severe damage ratio of buildings, estimated 
from normalized likelihood function (average values) 
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