
WAVELET-BASED  SPATIO-TEMPORAL FUSION OF OBSERVED RAINFALL WITH NDVI 
IN SRI LANKA 

 
Yann Chemin 

International Water Management Institute, Pelawatte, Sri Lanka 
 
Keywords: Wavelet, Fourier, fusion, spatio-temporal, NDVI, MODIS, rainfall, daily, Sri Lanka 
 
Abstract: Availability of rainfall time-series is limited in many parts of the World, and the continuity of such records is 
variable. This research endeavors to extend actual daily rainfall observations to ungauged areas, taking into account events 
of rainfall as well as cumulative total daily rainfall, over a period of 11 years. Results show that rainfall events histograms 
can be reconstructed, and that total cumulative rainfall is estimated with 85% accuracy, using  a surrounding network of rain 
gauges at 30-50 Km of distance from the point of study. This research can strengthen various types of research and 
applications such as ungauged basins research, regional climate modeling, food security early warning systems, agricultural 
insurance systems, etc. 
 

1. Introduction 
 
Continuous long and reliable rainfall records at any location are the prerequisite for informed water management decisions 
and water resources planning: they tell how much water actually is available and how this availability varies with time. 
Ground observational network on rainfall is inevitably limited to a few locations, and is very sparse in many regions of the 
world. It is unlikely that traditional methods of rainfall data acquisition can help improve the situation in the future, but 
continuously advancing satellite-based approaches can.  
 
To augment rainfall data availability, various forms of re-analyses are used, and subsequently, the synthetic rainfall data sets 
are fed into hydrological models. An initial review of remote sensing for hydrology is found in Schultz (1988) who showed 
(among other cases) how to use radar rainfall measurements in a distributed hydrological model for real-time flood 
forecasting. Later reviews, as found in Engman and Gurney (1991), Pietroniro and Prowse (2002), Schmugge et al (2002), 
Pietroniro and Leconte (2005), Wagner et al (2009). cover a range of possibilities of detection, classification, evaluation and 
management of water in its various phases using the large palette of space-borne sensors. 
 
One possible avenue to significantly enhance rainfall data availability is to derive rainfall from remotely sensed (RS) 
vegetation data. Various RS products are available in public domain since late 1970s. Their spatial and temporal resolutions 
are orders of magnitude better than any ground observation network will ever be able to achieve. The condition of the 
ground vegetation, reflected by the widely used Normalized Difference Vegetation Index (NDVI) is related to the 
antecedent precipitation at any particular point and  many attempts in the past were made to establish an explicit relationship 
between RS-derived vegetation indices and rainfall. Initial attempts to compare NDVI response to rainfall can be found in 
the research of Nicholson et al. (1990) who found a 60 days’ time lag between the Vegetation Index and rainfall patterns and 
stronger correlation of inter-annual patterns in the Sahel than in East Africa. They also found that annual integration of 
NDVI correlates well with total rainfall. Later, Santos and Negri (1997) found that Vegetation Index and rainfall are 
uncorrelated in the Amazon Basin. They subsequently found that in the Northern part of Brazil, under a drier climate, 
correlation is very clear, and even sensitive to rainfall regimes less than 100 mm/month. Immerzeel et al (2005) used a 
signal processing method to correlate total rainfall to signal parameters in Tibet and found highest correlation of Vegetation 
Index with pre-monsoonal rains. They conclude that signal processing methods generate stronger correlations than standard 
time-series analysis. 
 
The temporal daily rainfall reconstruction technique that this paper proposes to extend in the combined dimension of space 
and time is found initially in Yarleque et al (2005a, 2005b, 2006, 2007a, 2007b) and later the same in Quiroz et al (2011). 
The methodology found in these articles was restricted to the temporal dimension, using a signal processing technique 
called wavelet decomposition. It decomposed the rainfall signal in the high frequency domain and satellite vegetation index 
in the low frequency domain. Once those frequency signals were isolated, they were recomposed together creating a new 
merged signal of vegetation and rainfall that would fit temporally the initial rainfall signal from the meteorological station. 
This effectively fused heterogeneous physical sources to generate a mixed source synthetic time-series. 
 
We propose to expand this technique by a wavelet-based spatio-temporal fusion technique, involving the interpolation of 
wavelet decomposition levels from daily rainfall stations and the recomposition with individual NDVI pixels. The original 



method used wavelet and Fourier transforms within the temporal dimension. We used a convolution approach within the 
spectral dimension of wavelet levels to spatially interpolate the different locations of observed rainfall. Recomposition of 
mixed sources, rainfall and MODIS wavelet spectral dimension parameters produced a spatio-temporal dataset of daily 
interpolated rainfall over our study area, the island of Sri Lanka, for the period 2000-2010.  
 
Objectives 
 
This research aims to expand the initial results of a new spatio-temporal fusion algorithm dedicated to extend the time-series 
of rainfall events from meteorological stations and rain gauges across areas where there are no rainfall time-series. This is 
achieved by “encoding” rainfall time-series available and by spatially bridging these encodings together. Spatial and 
temporal Vegetation Index from satellite imagery is also encoded, and both types of encoding (i.e. rainfall and vegetation) 
are fused together to synthetically recreate rainfall time-series were none was before observed. 
 

2. METHODOLOGY 
 
Original daily rainfall data as received from the meteorological department of Sri Lanka had 106 meteorological stations or 
rain gauge data from year 2000 to year 2010 included. Parsing the files was complex and two sets of outputs were 
generated, their spatial coordinates in one file for use in the interpolation at the bottom of figure 1 and the rainfall data in a 
separated set of temporal files as used at the top of figure 1 (right side). 
 

  
Figure 1: Rainfall ground data location and the decomposition/interpolation method 

Note: Hinkuragoda meteorological station will be used in the experiments 
 
The rainfall temporal arrays are decomposed down to level 2 using sym6 wavelets signatures. Only the high-pass 
information is retained for later, level 1 is named r.HP1 and level 2 is named r.HP2 in figure 1, a temporal signature of the 
two high-pass levels is seen in (Figure 3). Additionally, the temporal arrays are smoothed by a Fast Fourier Transform (FFT) 
with less than 10 harmonics, an amplitude normalization is applied to range the output signal from 0.0 to 1.0. This signal 
(r.FFT) will be used in the second part of the methodology (figure 2). 
 
Using the geolocation information extracted from the Meteorological Department of Sri Lanka daily rainfall dataset (Fig. 1 
left side), it is now possible to interpolate by convolution the wavelet decomposition high-pass levels (r.HP1 and r.HP2) 



every day for eleven years, thus generating ~4018/[HPlevelNo2] images of Sri Lanka for each level (Figure 2).  
 

 
Figure 2: spatial interpolation of r.HP1 and r.HP2 at a given frequency slice 

 
This will conclude the first part of the methodology (figure 1), whereby the daily rainfall data is temporally decomposed 
and its high-pass levels are interpolated daily, so as to generate a daily high-frequency wavelet decomposed rainfall 
footprint for all Sri Lanka from recorded ground data. 
 
The second part of the methodology (figure 4) is using the Normalized Difference Vegetation Index (NDVI) from the 
MODIS sensor on Terra satellite platform at a 16-days composite period for consistency of BRDF correction and also 
because only low-pass information are going to be used from this dataset.  
 



Figure 3: Frequency data: Red = r.HP1, Green = r.HP2, Blue = n.LP2
(note the ½ and ¼ signal dimensions from 4018)

 
The NDVI data (figure 4) is vacuumed from NODATA stamps with a moving average which is passed temporally to fill in
these stamps. For each pixel, a temporal Fourier smoothing is applied with a low harmonic number input in a FFT as
discussed in Yarleque et al (2006).  
 
To fasten the matching with r.FFT, an amplitude normalization of NDVI data with bounds of 0.0 and 1.0 is also applied and
named n.FFT (figure 4). Both r.FFT and n.FFT
changing the phase delay of n.FFT, eventually reducing the phase difference between both of them. The phase
iteratively identified is then retrofitted into the
between NDVI and rainfall patterns in Africa, this research found similar range of shifts (~65
 

Figure 4: spatio-temporal fusion of frequency rainfall and NDVI data

 
Figure 3: Frequency data: Red = r.HP1, Green = r.HP2, Blue = n.LP2 

(note the ½ and ¼ signal dimensions from 4018) 

The NDVI data (figure 4) is vacuumed from NODATA stamps with a moving average which is passed temporally to fill in
these stamps. For each pixel, a temporal Fourier smoothing is applied with a low harmonic number input in a FFT as
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n.FFT are introduced into a phase-shift absorption type algorithm that is iterativ
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The NDVI data (figure 4) is vacuumed from NODATA stamps with a moving average which is passed temporally to fill in 
these stamps. For each pixel, a temporal Fourier smoothing is applied with a low harmonic number input in a FFT as 
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The n.FFT is then decomposed down to level 2 using sym6 wavelets signatures for each pixel location in the stack of NDVI 
images (Figure 3). Only the low-pass at level 2 is kept (n.LP2) for use in the temporal wavelet recomposition using the same 
sym6 family member for each of the land pixels available in Sri Lanka.  
 
Merging back each temporal set into the stack of contiguous temporal pixels permits daily images of Sri Lanka's rainfall to 
be regenerated. For a detailed desrcription of the methods used, see Appendix 2. Results were calculated for around 94,000 
pixels (covering Sri Lanka at 1x1 km) propagated in time 4018 days (2000 – 2010). 
 

3. RESULTS 
 
Experiment 1 
 
The first experiment aims at proving that the rainfall quantity found at a random meteorological station is conserved 
throughout the algorithmic transformations. The meteorological station is Hingurakoda (see Fig. 1) located in North Central 
Sri Lanka (lat: 8.05° ; long: 80.95°). 
 

   
Fig 5: Sri Lanka map of reconstructed rainfall exp.1 and exp.2 (06/Nov/2000) 

Note: the black circle indicates Hinkuragoda meteorological station 
 
A first estimation of the results can be seen in Fig. 5 for a given day (6 November 2000).  Results for the single pixel at the 
location of the meteorological station at Hinkuragoda (Fig. 1) are shown in Figure 6.  



Fig 6: Hingurakoda meteorological station
cumulative daily rainfall and its reconstruction for the period 2000

 
Figure 6a shows the detail of reconstruction of individual rainfall events for a single year (2010); Figure 6b compares resul
for cumulative daily rainfall over 11 years (2000
 
Experiment 2 
 
To reinforce the validation procedure, calculations w
removed. The aim was to assess the reconstruction of a hypothetical rainfall gauge without initial knowledge of its temporal
variability, except what is available from neighboring stations.
 

Figure 7: Rainfall observed Vs reconstructed (without original rainfall data) at
its reconstruction for the year 2010 and b) cumulative daily rainfall and its reconstruction for the period 2000

 
The results of this second experiment (Figure 7
compared to the first experiment. From the cumulative rainfall reconstruction (Figure 7 right)
reconstruction from real data was observed. The total difference yield
in absence of the original data from the Hingurakoda
 
From Figure 7b one can also observe a linear relationship between the original
the overall pattern of cumulative rainfall are different. Thus, the contribution of rainfall events from neighbouring
meteorological stations has a strong importance in recovering this pseudo
Hingurakoda meteorological station. In this context, the homogeneity of the climatic zone should be considered when
reducing the number of rainfall gauges density to apply such
direction, then comes 35Km SW, 40Km W, 45Km SE and 55Km NE.

Fig 6: Hingurakoda meteorological station a) observed daily rainfall and its reconstruction for the year 2010 and b)
cumulative daily rainfall and its reconstruction for the period 2000 - 2010. 

Figure 6a shows the detail of reconstruction of individual rainfall events for a single year (2010); Figure 6b compares resul
for cumulative daily rainfall over 11 years (2000 – 2010)   
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igure 7: Rainfall observed Vs reconstructed (without original rainfall data) at Hingurakoda a) observed
for the year 2010 and b) cumulative daily rainfall and its reconstruction for the period 2000

 

s of this second experiment (Figure 7a) found that some of the biggest events of rainfall are more underestimated
the first experiment. From the cumulative rainfall reconstruction (Figure 7 right), a 
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Figure 8: Hinkuragoda difference histograms for a) Experiment 1 and b) Experiment 2 

Note: Removed all data where the difference equals 0 mm/d 
 
Figure 8a and b show histograms of the difference between original rain gauges data and reconstructed rainfall data, for 
Experiment 1 and Experiment 2 respectively. In the y-axis is the number of days where the difference is recorded and in the 
x-axis, centered to zero value, is the difference in mm/day of rainfall values. The overall shape and limits (+/- 50 mm/d) are 
conserved throughout both experiments, but both histograms are slightly shifted towards the positive side.  Differences in 
single large (events between +50 and +100 mm/d seen in Figure 8a) are in themselves the source of the reduction in 
accuracy found in Figure 7b.  
 
Table 1: Descriptive statistics of the difference histograms 

 Exp1* Exp2* Exp1 Exp2 
Sample size  627 618 4018 4018 
Minimum    -106.39 -112.23 
Maximum    107.79 110.20 
Arithmetic mean  3.08 6.08 0.02 0.72 
Unbiased variance   120.87 131.86 
Biased skewness  0.61 0.91 0.58 1.63 
Biased kurtosis  4.40 3.07 21.20 21.03 
* Removed diff=0     

 
Table 1 features basic descriptive statistics run on the histograms with (Exp1 and Exp2) and without (Exp1* and Exp2*) the 
zero value samples, translating in a large difference in samples and changes in descriptive statistics. The arithmetic mean is 
slightly positive, more for the experiment 2 than 1 in both cases. Variance is high, yet similar in both experiments. Skewness 
is different when using all data. Kurtosis does not shown significant changes in all cases. 
 
Figure 7a shows a non-reconstructed rainfall event at around day 180. This can be attributed either as missing or as a lag 
between observed and reconstructed event, the lag maybe of a few days. Either way, this is worth investigating as events of 
neighboring stations influence largely the reconstruction. A preferential direction of interpolation following the rainfall path 
maybe investigated. This can be introduced by finding the rainfall events motion vectors using remote sensing rainfall 
intensity datasets such as the Tropical Rainfall Measurement Mission (NASA, 2012). This will also provide background 
information (rainfall intensity) to remove dependency from meteorological station measurements' density.  
 

4. CONCLUSIONS 
 
By extending the already existing wavelet temporal relationship between NDVI and daily rainfall into the spatio-temporal 
dimensions, this research aimed at exploiting the combined benefits of the spatial information in NDVI images and the 
temporal information of rainfall. Eleven years of cumulative rainfall were reconstructed without its original meteorological 



station data with an accuracy of 85.34%. Descriptive statistics of the difference histograms for experiment 1 (using 
Hinkuragoda meteorological station data as input to the algorithm) and for experiment 2 (without the Hinkuragoda data) do 
not show much change. 
 
Additional work will also involve scaling the method to larger spatio-temporal dimensions, implying the adaptation of the 
methodology into High-Performance Computing frameworks as found in Akhter et al. (2006, 2007, 2008), Chemin (2012).  
 
Finally, direct impact of this research can strengthen ungauged basins research, regional climate modeling, food security 
early warning systems, agricultural insurance systems, etc. 
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Appendix 1: Theoretical background 
 
Dimensionality is the basis of most of the research on this Earth. Space and time dimensions, most ubiquitous to human 
senses, are but a basis to understand spatial and temporal events. The additional frequency dimension is briefly expanded 
below by two analytical bodies of research represented by the Fourier (Initial article: Fourier, 1808) and the Wavelet (Initial 
article: Haar, 1910) fields of sciences. 
 
There are countless sources of Fourier Series and Transforms, we have used information from Osgood (2011). The 
underlying concept in Fourier analysis is that real data has intertwined repeating patterns with a quantifiable number of 
periods. A Fourier analysis will analyze the contribution of certain harmonics (periods) to the full signal, and summarize the 
information as fingerprints of the harmonics in a dimension of its own, the spectral dimension. A function t is periodic if for 
all T>0: 
 
f (t+ T )= f (t)           (1) 

 
A finite Fourier series is a Fourier-type trigonometric sum of a periodic signal of period 1 can be expanded by: 
 

f (t)=
a0

2
+∑

n= 1

N

(ancos(2πn t)+ bn sin(2πn t)) = ∑
n =− N

N

cne2πi n t

    (2) 
 
with cn, the Fourier coefficient being a complex number satisfying the following: 
 

 c− n =  c̄n also for n= 0 we havec0=  c̄0=
a0

2       (3) 
 
It turns out that one can go back and forth from f(t) and Cn. Let f(t) be in L2([0,1]) and let: 
 

cn= ̂f (n)= ∫
0

1

e−2πi n t f (t )dt , n  
       (4) 

 
with Cn be its Fourier coefficients, within the spectral dimension, with the assumption of convergence of the partial sums. In 
this article, we will use the conversion of a time-series from real to spectral and from its n (n<10) first levels (harmonics) 
back to a degraded data in real dimension. This is called Fourier smoothing.  
 
Haar (1910), rediscovered and expanded by Daubechies (1992) developed an understanding that periodicity of a given event 
may have a non-constant return of event and actually found an analytical way to quantify those changes in the 
dimensionality observed (usually time or space) as it unrolls. The complementarity of Wavelet analysis to Fourier analysis is 
that Fourier will not “remember” the uniqueness of some event in the real dimension (space or time), but will proportionally 
return its event at all frequencies involved in the analysis. The result will be the appearance of traces of the same event more 
than once, after Fourier will have returned the information from the frequency domain. Wavelet-based analysis will be able 
to change the parameterization of the frequency analysis in order to retain unique events, while keeping recurring events 
fully developed back into the real dimension. This is the major difference between Fourier and Wavelet analyses: Fourier 
excels at stationary events, Wavelets at non-stationary ones. 
 
To analyze such changes and retain critical information throughout the dimensional changes, wavelets translate a window of 
analysis at a given scale of observation and store that information in the frequency domain. Thus wavelet analysis is a multi-
location/resolution analysis of a signal. The Continuous Wavelet Transform (CWT) at a given location translation on the 
signal τ  and amount of the signal analyzed at a given time (scale) s is given by the inner product of two functions. One 

function, f (t ) will be the signal we want to analyze with another function ψτ ,s( t ) . The parameters of the functional ψ
are explained below. 
 



CWT f
ψ(τ , s) = Ψf

ψ(τ , s) = 1
√ s ∫ f (t ) ψ(t− τ

s )dt
     (5) 

 
The signal x is said to be transformed by the transforming function ψ at t− τ location-translation on the signal and on 
1/s size of the same signal starting on that location-translation point. In turn, s is a frequency and its unit can be [1/time] if 

the signal is running on a temporal dimension. The transforming function ψ , also called Mother Wavelet can be of many 
sorts, literally called families of Mother Wavelets, according to their mathematical properties. In this research, we are going 
to use the same as in Quiroz et al (2011), the symlet at level 6. 
 


