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Abstract: When facility information is geocoded onto maps, higher accuracy and higher spatial resolution are 
required to assist AR interface. In this paper, we focus on the potential of a camera to act as a location sensor, 
assisting other location sensors to improve positioning accuracy. However, for a camera to be used as a location 
sensor, reliable maps will be required. We therefore focus on massive point-cloud data for use in reliable maps. We 
then develop a location-matching methodology based on image matching using an image taken from a camera and 
panoramic images generated from a massive colored point cloud. Finally, we present experimental results that 
confirm the validity of our approach. 
 

1. INTRODUCTION  
 
Recently, 3-D data-acquisition techniques and seamless positioning techniques in indoor and outdoor environments 
have become necessary for the construction and maintenance of facilities such as roads, bridges, tunnels, and public 
buildings. Laser scanning is one of these 3-D data-acquisition techniques. A laser scanner can acquire a 3-D point 
cloud by measuring the distance to a surface for a range of scanning angles. Moreover, a calibrated digital camera 
with a laser scanner can be used to acquire color information to add to the point-cloud data.  
For many fields such as navigation, disaster relief, and construction automation, the Global Positioning System 
(GPS) is used to identify sensor locations. Although the GPS is a convenient system, it is restricted to outdoor 
environments. However, a seamless positioning technique for both indoor and outdoor environments is required to 
obtain sensor locations. Currently, mobile devices have many location sensors such as Radio Frequency 
Identification (RFID) tags, Bluetooth, and wireless LAN [1,2]. Practical issues with the above systems for facility 
monitoring are accuracy requirements and hardware installations around indoor-outdoor environments in urban 
areas. Magnetic direction sensors can acquire directions directly. However, the magnetic field is affected by 
metallic materials such as iron frames in indoor environments. Therefore, we focus on the potential of a camera to 
act as a location sensor, assisting other location sensors to improve positioning accuracy. A camera is installed in 
almost all mobile devices. Moreover, the camera can be used without the need for transmitters or receivers.  
However, for a camera to be used as a location sensor, reliable maps will be required. Although there are some 
location-matching approaches that use maps such as 3-D Computer-Aided Design (CAD) models and image data 
sets, the success rate of location detection depends on the representation of 3-D model and its information content. 
In addition, estimation of the location as the external orientation parameters of the camera requires the matching of 
corresponding points in camera images and the 3-D model. Corresponding-point detection is easy in manual 
processing. However, corresponding-point detection is not simple in fully automated approaches, because the 
features are inherently different (e.g. edges in images and boundaries in 3-D models). Compared with a model 
representation based on a Triangulated Irregular Network (TIN) or on CAD, a point-cloud representation is more 
photorealistic. Moreover, the rendered result of a massive point cloud can be used as a panoramic image. We 
therefore focus on massive point-cloud data for use in reliable maps. Our proposed location-matching methodology 
is based on image matching using an image taken from a camera and panoramic images generated from a massive 
point cloud in an image-based GIS. 
When facility information for construction and maintenance is geocoded onto maps, higher accuracy and higher 
spatial resolution are required. We therefore describe fine location matching in this paper. Our development aims 
for 10 cm accuracy to assist with existing indoor positioning techniques. We then develop this matching approach 
to confirm that a camera can be used as a location sensor in a fully automated procedure. Finally, we present 
experimental results that confirm the validity of our approach. 
 

2. METHODOLOGY 
 
The processing flow of our method for providing location data is shown in Figure 1 and described as follows. First, 
a template image is generated using a calibrated camera image. Second, photorealistic panoramic images from 
various viewpoints are prepared as point-cloud images by a rendering of massive point-cloud data. Third, the 
image-matching process uses the template image with panoramic images as base images. Finally, the location of the 

mailto:mnaka@shibaura-it.ac.jp


camera capture is detected by the selection of a matched panoramic image from all the panoramic images. In 
addition, the direction of the camera capture is detected from a matched position on the matched panoramic image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Processing flow 
 
Point-cloud rendering 
 
Massive point-cloud data are well represented in visualization techniques. However, viewpoint translation in point-
cloud rendering reduces the visualization quality because of noticeable occlusion exposure and a noticeably uneven 
point distribution. Although the point cloud preserves accurate 3-D coordinate values, the phenomenon of 
transparent far points existing among the near points reduces the visualization quality for users. Splat-based ray 
tracing [3] is a methodology for improving the visualization quality by the generation of a photorealistic curved 
surface on a panoramic view using the normal vectors from point-cloud data. A problem is the substantial time 
required for surface generation in the 3-D workspace. An advantage of 3-D point-cloud data is that it allows 
accurate display from an arbitrary viewpoint. By contrast, panoramic imagery has the advantage of appearing more 
attractive while using fewer data. In addition, panoramic image georeference [4] and distance-value-added 
panoramic image processing [5] show that both advantages can be combined for 3-D GIS visualization. We 
therefore focus on the possibility that these advantages can be combined by a point-cloud projection into panorama 
space. In particular, we consider that a simpler filtering algorithm will be important for achieving high-volume of 
point-cloud processing at high speed. We have therefore developed a point-based rendering application with a 
simpler filtering algorithm to generate photorealistic panoramic images with arbitrary viewpoints, which we call 
LiDAR VR data [6, 7].  An example of point-cloud rendering is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Part of a panoramic image in which the left image is the result after a viewpoint translation of 6 m the 
sensor point and the right image is the result after filtering 
 

任意視点球面画像任意視点球面画像任意視点球面画像

任意視点座標値任意視点座標値任意視点座標値Camera image

Lens distortion

Image projection

Template matching

Matching point in image

Colored point cloud

Point-cloud rendering

Matched point-cloud image

Conversion from pixel to angle Translation reference

Template generation

Viewpoint parameters

Point-cloud image

Matching results

Camera rotation parameters Camera translation parameters

Input data

Output data



The processing flow of our methodology in this research is described below. First, sensors acquire a point cloud 
with additional color data such as RGB data or intensity data. The sensor position is defined as an origin point in a 
3-D workspace. Second, a LiDAR VR image from the simulated viewpoint is generated using the point cloud. 
Finally, the generated LiDAR VR image is filtered to generate missing points in the rendered result using distance 
values between the viewpoint and objects. 
The detail of panoramic image generation using the point cloud is described as follows. First, the colored point 
cloud is projected from 3-D space to panorama space. This transformation simplifies viewpoint translation, filtering, 
and point-cloud browsing. The LiDAR VR data comprise a panorama model and range data. The panorama space 
can be a cylindrical model, a hemispherical model, or a cubic model. Here, a spherical model is described. The 
measured point data are projected onto the spherical surface, and can be represented as range data as shown in 
Figure 3. The range data can preserve measured point data such as X, Y, Z, R, G, B, and intensity data in the 
panorama space in a multilayer style. Azimuth and elevation angles from the viewpoint to the measured points can 
be calculated using 3-D vectors generated from the view position and the measured points. When azimuth angles 
and elevation angles are converted to column counts and row counts in the range data with adequate spatial angle 
resolution, a spherical panoramic image can be generated from the point cloud. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:  LiDAR VR data comprising a spherical panorama (left side of the figure) and range data (right side of 
the figure) 
 
Camera image projection onto the point-cloud image 
 
Azimuth and elevation angles are used as coordinate values in the panoramic image generated from the point cloud. 
Azimuth and elevation angles for the camera image can be calculated directory, based on the projection from 
camera coordinates to panorama coordinates using the rectified camera image after camera calibration. However, in 
general, the spatial resolution of a camera is higher than that for laser data. Therefore, a procedure based on the 
projection from panorama coordinates to camera coordinates can reduce the processing time. Image coordinates in a 
camera image are converted to azimuth and elevation angles, as shown in Figure 4. 
 
 
 
 
 
 
 
 
 

Figure 4:  Camera image projection onto a spherical surface 
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In addition, the spherical surface coordinates can be expressed as 
 
 

(1) 

where   f = focal length, 
 λ= azimuth angle, 
 φ= elevation angle, and 
 x, y, z= spherical surface coordinates 
 
Moreover, y and z in these spherical surface coordinates are multiplied by a ratio of x and the focal length of the 
camera. The calculated y and z are then converted to image coordinates in the panoramic image using camera 
rotation angles and a principal point taken from the camera calibration parameters. 
 
EXPERIMENTS 
 
We conducted experiments on location matching using a digital camera and a point cloud in a gymnasium, which 
acted as a large indoor test field. First, we acquired digital camera images as input data for location detection and a 
point cloud as a reference map. Next, we applied image matching to estimate the three-degrees-of-freedom (3-
DOF) parameters. Three kinds of parameter estimation were conducted in our experiments. Because horizontal 
position and azimuth angle are the essential parameters in general navigation applications, we therefore focused on 
estimating the camera position (X, Y) and the camera azimuth angle as the 3-DOF parameters. 
 
Data acquisition 
 
We used a digital camera to supply the input data for location detection and a point cloud taken from a terrestrial 
laser scanner. Firstly, we acquired the camera images (3648 × 2736 pixels) using a SONY DSC-HX5V. We 
installed the camera on a total station (SOKKIA SET550 RXS) to capture images in 12 directions at intervals 30° in 
the horizontal plane, as shown in Figure 5. The 12 images were projected onto the spherical coordinate space with a 
0.20° angle resolution after camera calibration, giving 12 images of 360 × 300 pixels each, as shown in Figure 6. 
 
 
 
 
 
 
 

Figure 5:  Digital camera mounted on total station 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Projected camera images 
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Secondary, we prepared a point cloud taken from a terrestrial laser scanner (RIEGL VZ-400). This scanner can 
acquire panoramic distance data and corresponding color data over 360°horizontally. The scanner was placed at 
two points. The distance between the two points was approximately 15 m. The camera mounted on the total station 
was placed on the line between the two points, as shown in Figure 7. The input laser-scanner data set comprised 
7,000,000 points in total after 3 cm3 spatial filtering. 
The color points measured by the laser scanner were then rendered onto a spherical space with an arbitrary 
viewpoint. Figure 8 shows a rendered panoramic image (1800 × 450 pixels) with 0.20° angle resolution. The 
average processing time for the panoramic image conversion and iterative filtering (three iterations) using parallel 
C programming was 0.33 s for one-shot generation of multiple viewpoints without file I/O. The processing 
involved an Intel Core i7 2.80 GHz processor using eight-thread execution. 
 
 
 
 
 
 
 
 
 

Figure 7:  Sensor arrangement 
 
 
 
 
 
 
 
 
 
 

Figure 8:  Rendered panoramic image using a point cloud 
 
Image matching 
 
We estimated the azimuth angle and the horizontal position (X, Y) of the camera via template matching in this 
experiment. We applied a template-matching approach based on the sum of absolute difference to achieve simple 
processing of the camera image and panoramic images in our image matching. Camera images were used directly 
as template images and panoramic images from the point cloud were used as reference images. 
The camera was set perpendicular to the line from the laser reflector on the floor. The relative height of the camera 
position from the reflector was measured with a tape measure. The 3-D position of the reflector was measured with 
the laser scanner. In this way, the height value of the camera position was acquired. The camera was set 
horizontally using the tripod in the total station. The horizontal search line in the panoramic image was therefore 
given by an elevation angle (0°). The search interval in the panoramic image was one pixel. The search range in the 
panoramic image was therefore from 0.20° to 360.00° at intervals of 0.20° horizontally and the number of search 
points was 1,800 points per panoramic image. 
These estimations were conducted over a wide spatial range (10 m at 50 cm spatial resolution) and a narrow spatial 
range (1 m at 5 cm spatial resolution). The number of arbitrary viewpoints was therefore 21 × 21 = 441 points. 
As a result, we generated 12 template images from the camera images and 441 panoramic images from arbitrary 
viewpoints for our template matching. The experiment therefore provided 12 estimation results taken from each 
matching point and detected from 1800 × 441 = 73,800 candidates. The average processing time for the matching-
point detection in the template matching via single-thread C programming was 363.90 s using Intel Core i7 2.80 
GHz processor. 
 

Total station

Laser scanner



3. RESULTS 
 
Three kinds of parameter estimation were conducted in our experiment. First, azimuth angles for the digital camera 
were estimated with a given viewpoint taken from the laser scanner. Second, the X and Y positions of the digital 
camera were estimated for given azimuth angles taken from the total station. Finally, both the positions and azimuth 
angles (3-DOF) of the digital camera were estimated. These estimations were conducted for both a wide spatial 
range (10 m) and a narrow spatial range (1 m). 
 
Azimuth angle estimation 
 
Azimuth angles for the digital camera were estimated using each matching point detected from 1,800 candidates, as 
shown in Figure 9. The horizontal axis refers to the camera image numbers described in Figure 6. The vertical axis 
indicates differences from the true value measured by the total station. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Camera position estimation 
 
The X and Y positions for the digital camera were estimated using each matching point detected from 441 
candidates. Figures 10 and 11 show results for the wide and narrow spatial range, respectively. The horizontal axis 
refers to the camera image numbers. The vertical axis indicates horizontal distances from the true value measured 
with the laser scanner. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The 3-DOF estimation 
 
Azimuth angles and positions for the digital camera were estimated using each matching point detected from 
73,800 candidates. Figures 12 and 13 show the results for the wide spatial range, with Figures 14 and 15 showing 
the results for the narrow spatial range. The horizontal axis refers to the camera image numbers. The vertical axes 
in Figures 12 and 14 indicate horizontal distances from the true value measured with the laser scanner. The vertical 
axes in Figures 13 and 15 indicate differences from the true value measured with the total station. 
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4. DISCUSSION 
 
From the results of our experiments, we have confirmed that our approach can detect locations using a camera and a 
point cloud via a fully automated procedure. There are three kinds of parameter estimation results to be discussed. 
First, the azimuth angle estimation for given position parameters was achieved reliably to within 1.0°, as shown in 
Figure 9. We have therefore demonstrated that our approach can be used in an indoor space environment containing 
iron frames if accurate positional data exist. 
Second, the X and Y camera position estimations for given azimuth angles achieved nearly 50 cm accuracy for the 
wide spatial range, as shown in Figure 10. The narrow spatial range result also achieved almost 30 cm accuracy, as 
shown in Figure 11. From these results, we suggest that our approach will assist stand-alone positioning using a 
GPS receiver and existing indoor positioning techniques to achieve higher positional accuracy when accurate 
azimuth data exist. 
Finally, both the camera positions and azimuth angles (3-DOF) were estimated together. These results were less 
stable than the independent results because of the increase in estimated parameters. However, we have also 
confirmed that our approach can assist existing indoor positioning techniques to achieve higher positioning 
accuracy. For example, if we have indoor positioning services such as RFID tags and wireless LAN at 10 m spatial 
resolution, our proposed approach can improve the positional data to sub-meter accuracy. In addition, the positional 
data are attached to degree-ordered azimuth angles. 
When we analyze our results, Figure 13 shows that the results for image numbers 9 and 11 gave large matching 
errors. Figure 14 also shows that image number 2 gave large matching errors. We assume that color differences 
between the camera images and the rendered panoramic images caused the matching errors, because the window 
objects in the gymnasium were regions for which the laser scanner failed to measure 3-D points. When laser-
scanning failures exist, the failure points are projected as missing points from the camera into the panoramic image. 
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Therefore, a new pixel value (color) is estimated at each missing point in the panoramic image using neighboring 
pixel values in this experiment. The result of the color estimation will then differ from the pixel value in the camera 
image. Specular reflection on the floor also caused matching errors for the same reason. 
Although we detected matching points from 73,800 candidates, other data could be used in the location detection. A 
reduced number of candidates for matching, achieved by using initial values taken from the various sensors in a 
mobile device, would be an effective approach to achieving more stable matching. For example, gyro sensor data 
could be used as initial values for azimuth angle estimation. 
Although the spatial resolution of panoramic images was 0.20°, we could process at approximately 0.01° resolution 
using massive point clouds before data reduction in the current state. In addition, we could apply sub-pixel image 
processing to achieve higher spatial resolutions for positions and azimuth angles. 
Currently, there are many challenges to making our approach useful in practice. Processing-time reduction is one 
technical issue. Our proposed approach has achieved 3-D location matching from a 3-D data-processing problem to 
simple 2-D image processing. This means that graphics-processor-based computing might be an effective and low-
cost solution for our procedure. We can identify three additional challenges as follows. The first challenge is 
location detection using a handheld camera that includes roll, pitch, and yaw angle estimation. The second 
challenge is robust estimation in a changing environment. The third challenge is robust estimation when occlusion 
caused by moving objects such as pedestrians occur. 
 

5. CONCLUSIONS 
 
First, we have focused on the fact that the camera installed in mobile devices has the potential to act as a location 
sensor, assisting other location sensors to improve positional accuracy. We have also observed that massive point-
cloud data can be used as a reliable map. Our proposed location-matching methodology is based on image matching 
using images from a digital camera and panoramic images generated from a massive point cloud in an image-based 
GIS. When facility information for construction and maintenance is geocoded onto maps, higher accuracy and 
higher spatial resolutions are required.  
In this paper, therefore, we have described fine location matching aiming for 10 cm accuracy to assist indoor 
positioning techniques such as RFID and wireless LAN. We have then developed a matching system to confirm that 
our location application can provide location information using a camera and a point cloud via a fully automated 
procedure. Although the current success rate for location detection was below 100%, we have confirmed that our 
approach can detect a location using a digital camera horizontally. We are currently improving the reliability of our 
location-matching procedure. 
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