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Abstract: Linear mixture model (LMM) is widely used in remote sensing data. It requires the number of 
endmembers and their signatures. Endmember signature matrix used in LMM is the same for the entire process, 
which may not be true when the image scene is large. The multiple endmember spectral mixture analysis 
(MESMA) has been proposed to relax the limitation of LMM, i.e., the number of endmembers and their types can 
be changed from pixel to pixel. For a given pixel, MESMA searches for the endmember set from all the 
endmembers present in the image scene. In this paper, MESMA is referred to as endmember-variable LMM 
(EVLMM). This algorithm is particularly designed for hyperspectral imagery. There is no need any threshold 
requirements in the searching process. In fact, the computational complexity of searching process increases as the 
number of endmembers increases. A challenging problem is to reduce the computational complexity of searching 
process when the number of endmembers is high. In this paper, we present an algorithm to fasten the searching 
process in EVLMM. The algorithm first divides the original image into sub-images and then performs EVLMM for 
the individual sub-image. A sub-image endmember set (Sub-ES) consists of endmembers located in the sub-image 
and their neighbors chosen from endmember distances. The image endmember set (ES) or Sub-ES is selected for a 
given pixel based on its spatial information. In general, pixels with similarly spatial information are most likely 
made from the same endmember set. Hence, the Sub-ES is chosen for these pixels and the ES is preferred for the 
others. An experimental comparison of the original and proposed algorithms is conducted. The result demonstrates 
that the proposed algorithm speeds up the searching process while retaining the quality of estimated abundances. 
 
 

1. INTRODUCTION 
 
A hyperspectral image sensor employs hundreds of spectral channels to collect data for an area of interest. The 
example of hyperspectal image sensor includes the Airborn Visible/Infrared Imagine Spectrometer (AVIRIS), 
Hyperspectral Digital Imagery Collection Experiment (HYDICE), and the space borne Hyperion. The AVIRIS 
image contains 224 contiguous spectral bands ranging from 400 to 2,500 nm with 20 m spatial resolution and 10 
nm spectral resolution while the HYDICE has 210 spectral bands with the same spectral band and spatial resolution 
between 0.75 and 3.75 m. Hyperion sensor collects 224 spectral bands with 30 m spatial resolution and 10 nm 
spectral resolution. Due to the rough spatial resolution, more than one material may be resident in the area covered 
by a pixel. In such case, a pixel can be considered as the mixture of pure materials.  
 
The linear mixture model (LMM) describes a pixel as a linear combination of endmember signatures and their 
abundances as follows. 
 
 r = Mα + n, (1) 
 
where r is L × 1 column pixel vector with L being the number of spectral bands, M = [m1, m2, …, mp] is the 
endmember signature matrix containing p endmembers, α = (α1, α2, …, αp)T is the abundance vector with αj being 
the abundance fraction of mj present in r, and n is an additive noise. When the number of endmembers and their 
signatures are known, least squares (LS) approach can be used to estimate the abundances such that the pixel 
reconstruction error is minimized, i.e.,  
 
 min  ‖
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The estimated abundance solved by eq.(3) can be non-negative values due to mathematical calculation. To satisfy 
physical meaning, abundances in each pixel should be non-negative numbers and the abundance sum must equal to 
one, i.e., (Shimabukuro & Smith, 1991) 
 
  ∑   = 1  and    ≥ 0    . (4) 
 
The fully constrained least squares linear unmixing (FCLS) proposed in (Heize & Chang, 2001) is one approach to 
estimate the abundances under the two constraints. However, reinforcing the abundance constraints may yield 
erroneous results (Elmore, et. al., 2000). Multiple endmember spectral mixture analysis (MESMA) was proposed in 
(Robert, et. al., 1992) for multispectral endmember set selection, where the number of endmembers and their types 
can vary from pixel to pixel for the entire image. In the searching step, MESMA searches for endmember sets that 
meet the criteria and selects the endmember set that produces the minimum pixel reconstruction error as the actual 
endmember set (AES) for a given pixel. MESMA requires a preset threshold for the criteria; therefore, the accuracy 
is actually based on user’s experience. Later, the endmember-variable LMM (EVLMM) was proposed particularly 
for hyperspectral images, where no threshold is needed. The details will be described in next section. 
 
 

2. THEORETICAL BACKGROUND 
 
To apply LMM when there is no prior information about the image scene, the number of endmembers is a first 
requirement. This number can be estimated by the number of endmembers estimation techniques. After the number 
of endmembers is known, the next step is to identify endmember signatures according to the estimated number of 
endmembers. When it is assumed that there are pure pixels in the image scene, endmember signatures can be 
extracted by endmember extraction techniques. Once the number of endmembers and their signatures are found, 
LMM or EVLMM can be applied. In this section, we briefly describe some related work including spatial 
information, virtual dimensionality (VD), unsupervised FCLS (UFCLS), and EVLMM algorithms. The detailed are 
given below. 
 
 
Spatial Information 
 
Spatial homogeneity index illustrates how similarity between a given pixel in the original image and its neighbors. 
A lower spatial homogeneity index implies that a given pixel and its neighbors are more similar and vice versa. 
This index is calculated by (Martin & Plaza, 2012) 
 
 RMSE[ ( ,  ),   ( ,  )] = (∑ (  ( ,  ) −    ( ,  ))     ) / ,  (5) 
 
where r(i,j) is an image pixel, r′(i,j) is the corresponding filtered image pixel, l is the l-th band with 1 ≤ l ≤ L, and L 
is the number of bands. Here, Gaussian filtering is applied to the original image for the filtered image. 
 
 
VD Algorithm 
 
The VD algorithm has succeeded in estimating the number of endmembers in many applications. It requires a false 
alarm rate, PF, to control its estimation. VD is based on the eigenvalues of the sample correlation and covariance 
matrices. The difference between the correlation eigenvalue, λ  , and covariance eigenvalue,λl , is used to determine 
the number of endmembers. If λ   - λl > 0, means there is signal variance contributing to the correlation eigenvalues 
of the l-th band since noise eigenvalue of the correlation and the corresponding eigenvalue of the covariance are 
equal. To determine the number of endmembers, the problem can be formulated as follows (Harsanyi et. al., 1994). 
 

H0: zl = λ   - λl = 0 and  H1: zl = λ   - λl > 0. 
 
The PF and detection probability, PD, are defined as the following 
   = ∫   ( )   

τ   and    = ∫   ( )   
τ , 

 
where τl is a detection threshold. 
 
 



UFCLS Algorithm 
 
The UFCLS algorithm is one of endmember extraction techniques. The basic idea is to find a set of pixels such that 
each pixel in this set is most dissimilar to the others based on the linear unmixing error. The details are described as 
follows. 

1. A pixel with the maximum length is selected as an initial endmember signature m0. The abundance α0 for 
each pixel in this case is one.  

2. Search for a pixel r that has the maximum error between the pixel and its reconstruction and define it as 
the first endmember m1. The endmember signature matrix M = [m1].  

3. Calculate the error between the pixel r and its estimate. The pixel r with the maximum error is selected as 
the second endmember m2, and it is concatenated to the endmember signature matrix, i.e., M = [m1 m2], 
and then estimate the corresponding abundance [α1 α2] using the FCLS (Heize & Chang, 2001).  

4. Repeat step 4 until p endmembers are found. 
 
 
EVLMM Algorithm 
 
This algorithm assumes that there is an optimal endmember set for a given pixel. In general, the MSE depends on 
the number of endmembers; the larger the number of endmembers, the smaller MSE on the reflectance 
reconstruction. So, the algorithm will search for the combinations with fewer endmembers that produces all 
nonnegative abundances and the smallest MSE on the reflectance reconstruction. EVLMM algorithm can be 
summarized as follows. 

1. Normalize pixel vectors and all the endmember signatures to ensure that the abundances obtained from LS 
are not dominated by their high energy, to which the MSE is sensitive. For example, if a less-significant 
endmember with a higher energy is removed from the endmember set, the corresponding MSE may be 
larger, which introduces an inaccurate endmember set.  

2. Determine the abundances using the endmembers in the initial endmember set (IES) with the LS. If the 
abundances are all nonnegative values, the IES is kept as the AES. If there is one or more negative 
abundances, go to the next step. 

3. Find the abundances from the combinations with one endmember, apply the LS, and then calculate the 
MSE. Keep the combination that produces all nonnegative abundances with the minimum MSE. 

4. Repeat Step 3 by searching from the two-endmember combinations. If the minimum MSE in the current 
step is greater than that in the previous step, the combination obtained from the previous step is selected 
as the ASE and the algorithm is terminated. Otherwise, test the combinations with more endmembers. 

 
 

3. PROPOSED APPROACH 
 
In this section, we present an algorithm, called FEVLMM, to fasten the searching step in EVLMM proposed in 
(Raksuntorn & Du, 2008). The number of endmembers in the image scene is determined by the VD estimation with 
PF  = 10– 4. Endmembers are extracted by the UFCLS technique. All extracted endmembers will be in the image 
endmember set (ES). The proposed algorithm shown in Figure 1 consists of three major steps as given below. 
 
  
Image Division 
 
In this step, the image scene is divided into non-overlapping sub-images. Endmembers extracted by the UFCLS 
located in sub-image are designed as the Sub-ES. A sub-image size depends on the entire image and its complexity. 
If the image is highly mixed, a smaller sub-image size would provide a better result. However, too small sub-image 
size leads the more non-homogeneity pixels in the sub-image, which increases the computational time. 
 
 
Spatial Information 
 
In this step, spatial homogeneity index calculated by the method in (Martin & Antonio, 2012) is used to determine 
pixel homogeneity. Pixels in homogenous area are more likely constructed by the same endmember set. Hence, 
these pixels are to search for their endmember sets from the Sub-ES while the ES is applied for the other pixels. 
 



Endmember Distance 
 
The distance between endmembers located in the sub-image and adjacent sub-image are calculated. If the distance 
is below a predefined threshold, the endmember in the adjacent sub-image is added into the sub-ES. The average 
distance can be defined as a predefined threshold. 
 
In summary, we first divide an image scene into sub-images. A Sub-ES of each sub-image consists of the 
endmembers located in the sub-image and the endmembers obtained from the adjacent sub-images with the distance 
below the predefined threshold. For each sub-image, Sub-ES is assigned for pixels in homogeneity area, and ES is 
selected for the other pixels. More pixels in homogenous area mean less computational time consuming in the 
searching step. 
 
 
 

 
Figure 1    Block diagram of the proposed approach 

 
 
 

4. EXPERIMENTS 
 
The Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data set was used in this experiment. The image 
scene was taken from the Lunar Crater Volcanic Field in Northern Nye County, Nevada, with 200 × 200 pixels and 
158 bands after low signal-to-noise ratio (SNR) and water absorption bands were removed. This image scene was 
well studied. There are at least five materials including cinder, playa, rhyolite, shade, and vegetation. In addition, 
there is an anomaly pixel in the image scene. The Lunar lake image scene was shown in Figure 2. 
 
 



 
Figure 2 Lunar Lake (Band 100) 

 
 
In the experiment, the estimate of the number of endmembers was six. Six endmembers were extracted by the 
UFCLS algorithm. These endmembers were considered as the ES. The image scene was divided into four non-
overlapping sub-images with a size of 100 × 100 pixels and 158 bands. The homogeneity index threshold was set to 
the difference between the mean and variance of the distances. For each sub-image, the predefined distance 
threshold was set to the average distance between all the endmembers located in the sub-image and the adjacent 
sub-images. All experiments were run by the personal computer (PC) with 1.6GHz CPU and 2GB memory. Figure 
3 illustrates the abundance maps after applying the FCLS, EVLMM, and FEVLMM. It can be seen that the 
abundance maps obtained from the proposed technique were similar to that from the FCLS and EVLMM. 
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(a) FCLS 
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Figure 3  Abundance Maps using the FCLS, EVLMM, and FEVLMM 
 
 
Table 1 lists the MSE between pixels and their estimates and the runtime. We can see that the MSEs from the 
EVLMM and FEVLMM were less than that from the FCLS while the FEVLMM yielded a slightly greater MSE 
than EVLMM. When compare the runtime, FEVLMM took about 420 seconds; EVLMM spent about 540 seconds; 
and FCLS needed about 534 seconds. It is obvious that the FEVLMM produced a minimum runtime following by 
the EVLMM and FCLS, respectively. 
 
 



Table 1    The MSE on reflectance and runtime 

Method MSE Runtime (second) 

FCLS 76.4874 534.1739 

EVLMM 73.0694 539.5117 

FEVLMM 73.4368 420.0353 
 
 
Table 2 lists the percentage of pixels with abundance sums. The abundances of all pixels from the three algorithms 
were non-negative. For FEVLMM, 99.45% of pixels had the abundances whose sums were between 0.8 and 1.2. 
When the range was decreased to [0.85 1.15] and [0.9 1.1], the percentages were about 96.46% and 83.05%, 
respectively. The EVLMM results were slightly better than FEVLMM; 99.52% of pixels had the abundances whose 
sums were between 0.8 and 1.2. When the range was decreased to [0.85 1.15] and [0.9 1.1], the percentages were 
about 96.85% and 84.47%, respectively. All abundance sums from the FCLS were equal to one since the two 
constraints were imposed. 
 
 
Table 2    The percentage of pixels with abundance sums 

Method Range of 0.80 - 1.20 
(%) 

Range of 0.85 - 1.15 
(%) 

Range of 0.90 - 1.10 
(%) 

FCLS 100 100 100 

EVLMM 99. 5175 96.8475 84.4650 

FEVLMM 99. 4525 96.4550 83.0525 
 

 
Table 3 lists the residual counts produced by the three algorithms. In this experiment, a residual count is the number 
of pixels from which this technique yields individual errors more than a preset threshold, T. For all thresholds, 
FCLS yielded the largest residual counts following by EVLMM and FEVLMM, respectively. We can see that the 
residual counts produced by FEVLMM were slightly greater than that from EVLMM. Over all, the execution time 
of FVELMM was the shortest while its performance on the abundances and the residual counts was slightly lower 
than that from EVLMM. 
 
 
Table 3    The residual counts 

Method T = 50 T = 60 T = 70 

FCLS 2520 495 88 

EVLMM 1499 239 25 

FEVLMM 1603 263 32 
 
 

5. CONCLUSIONS 
 
The EVLMM was developed for determining a realistic endmember set for a given pixel without any threshold 
requirements. EVLMM algorithm was useful and effective in selecting an optimal or sub-optimal endmember set, 
i.e., the sum-to-one and non-negativity constraints on the abundances were automatically satisfied. The MSE and 
residual counts on pixel reconstruction is less than that of the FCLS. The computational complexity depends on the 
number of endmembers. When the number of endmembers is large, the searching step is computationally expensive 
due to too many combinations.  
 
This paper presents an algorithm to fasten the searching process in the EVLMM, called FEVLMM. The original 
image was divided into sub-images. Sub-image endmember set consists of endmembers located in the sub-image 
and selected neighboring endmembers. Obviously, each sub-image contained less the number of endmembers than 
that of the original image. So, the computational complexity was greatly decreased in the implementation. The 
results showed that the proposed algorithm speeded up the searching process in the EVLMM. The performances on 



the MSE and residual counts on pixel reconstruction of the original and proposed algorithms were quite similar. 
There is a traded off between the performance and computational complexity; the lower threshold in neighboring 
endmember selection, the higher the number of endmembers in the sub-image endmember set and the higher 
computational complexity. Future work includes investigating of methods to the choice of homogeneity index 
threshold and the combining between spectral similarity and spatial information used in the neighboring 
endmember selection. 
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