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ABSTRACT: Various statistical techniques have been used to model species suitable environmental niche. This 
study performed a comprehensive assessment of statistical techniques and examined whether model predictions are 
associated with ecological characteristics of species.  We chose two representative species: widespread species, 
Chinese guger tree (CGT) and semi-cluster species Formosan rhododendrons (FR) in the Huisun study area in 
Taiwan as modeling target.  Eight algorithms, including decision tee (DT), discrimnant analysis (DA), logistic 
multiple regression (LMR), maximum entropy (MAXENT), DOMAIN, BIOCLIM, generalized linear models 
(GLM), maximum likelihood ML), were used in a GIS to incorporate topographic factors and vegetation index for 
species distribution modeling (SDM).  Model performance was evaluated based on kappa index, Independent 
t-test, and Bonferroni multiple comparison.  The results indicated that models had strikingly different predictive 
abilities among them.  The overall modeling accuracies of FR species were higher than those of CGT species and 
ecological characteristics of species affected predictive performance of models. DT, MAXENT, and DOMAIN 
were the best among the eight models. More importantly, SDM models merely based on topographic variables 
and their sample distribution could not be applied on a larger spatial scale since the topographic attributes of 
Tong-Feng and Kuan-Dau watersheds in Huisun are different.  Consequently, the predictions from models built 
based on samples only from one watershed could not be accurately extrapolated to another; however, SDM 
performance of FRs was still better than that of CGTs.  Improving model performance would be to run models on 
an iterative basis, and future work would incorporate predictor variables with soil and microclimate into a model so 
that it can be improved in accuracy and applied at a larger region. 
 
1. INTRODUCTION 
 

Species distribution model (SDM) has been the core of spatial ecology since the latter half of the 20th century 
(Guisan and Zimmermann, 2000).  It can provide a measure of a species’ occupancy potential in areas not covered 
by biological surveys and consequently is becoming an essential tool to conservation planning and forest 
management (Elith et al., 2006).  Technological innovation over the last few decades, especially in the fields of 
remote sensing (RS) and geographic information systems (GIS), greatly enhanced scientists’ capacity to face this 
challenge by giving them the ability to describe patterns in nature over broader spatial scales and at a greater level 
of detail than ever before (Miller et al., 2004).   

 
Advances in statistical techniques enhance the ability of researchers to tease apart complex relationships, while 

effectively incorporated of RS and GIS tools permit more accurate descriptions of spatial patterns and guide field 
surveys (Engler et al., 2004).  A broad suite of algorithms has been used to predict the geographical distributions 
of species (Elith et al., 2006).  Here, we implemented decision tree (Breiman et al., 1984), discriminant analysis 
(Johnson and Wichern, 2007), logistic multiple regression (Johnson and Wichern, 2007), maximum entropy 
(Phillips et al., 2006), BIOCLIM (Busby, 1991), DOMAIN (Carpenter et al., 1993), generalized linear model 
(Guisan et al., 2002), Maximum likelihood (Myung, 2003) to build models since they produced useful predictions 
in other studies.  These models use known distribution records of species, as well as environmental predictors (e.g. 
elevation, soil, rainfall), to build statistical functions for interpolating species’ distributions across the 
environmental space (Guisan and Zimmermann 2000).  Models may also extrapolate species’ distributions to sets 
of environmental conditions outside those used to build the models (Peterson, 2003). 
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However, many studies pointed out that it was difficult to accurately depicted spatial patterns for all species 
regardless of the techniques used.  This suggests that model performance may also be influenced by species 
ecological characteristics, sample size, model selection, and predictor contribution (Araújo and Guisan, 2006). 
Determining how species’ traits influence model performance is particularly important because environmental 
tolerance, range size, niche width, and niche preference could provide the means to predict which species are 
suitable for modeling (Stockwell and Peterson, 2002; Guisan et al., 2007; Hanspach et al., 2010).  Therefore it 
must be interpreted carefully of species’ occupancy potential in areas not covered by biological surveys.  Generally, 
models for species with broad geographic ranges and high environmental tolerance tend to be less accurate than 
those for species with smaller geographic ranges and limited environmental tolerance (Guisan et al., 2007).   

 
Data characteristics and species traits are expected to influence the accuracy with which species’ distributions 

can be modeled and predicted.  This study aimed at (1) testing how the different ecological traits affect the model 
prediction; (2) evaluating the ability of spatial extrapolation with models; (3) determining which model or models 
are most useful for predicting plant species distribution. We selected two representative types of tree species, one 
was widespread and the other was cluster for the study. Schima superba (Chinese guger tree, CGT) is a 
widespread tree species with high dispersal ability (Liu et al., 1994).  Rhododendron formosanum (Formosan 
rhododendrons, FR) is a kind of semi-cluster tree species, and always forms pure forests (Liu et al., 1994).  CGT 
and FR were chosen as targets because they are representative species in the Huisun study area in central Taiwan.  
Field surveys were conducted to collect their samples from the study area by a GPS with sub-meter accuracy. 
Further, GIS technique was used to overlay the layer of species with environmental variables.  Two sampling 
schemes were created for model development and validation via different combinations of CGT and FR samples 
taken from Tong-Feng and Kuan-Dau watersheds in Huisun.  We assessed eight modeling techniques and used 
“multi-modeling assessment approach”. This included the application of a single model to data describing 
patterns at different spatial scales and the comparison of several models using a common dataset.  
 
2. STUDY AREA 
 

The study area is a rectangular area, which encompasses Huisun Forest Station with an irregular shape (7, 477 
ha), and it has a total area of 17,136 ha.  Huisun Forest Station is located in the 24°2´–24°5´ N latitude and 
121°3´–121°7´ E longitude (Figure 1).  This station is the property of National Chun-Hsing University.  The entire 
study area ranges in elevation from 454 m to 2,418 m, and its climate is temperate and humid. 

 

In addition, the study area has nourished many different plant species more than 1,100 and is a representative 
forest in central Taiwan.  It comprises five watersheds, including two larger watersheds, Kuan-Dau at west and 
Tong-Feng at east.  All of the CGT and FR samples were collected from the Tong-Feng and Kuan-Dau sites in 
Huisun by using a GPS. 

 

 
Figure 1: Location map of the study area. 

 



3. MATERIALS AND METHODS 
 
3.1 Species data and sampling design 
 

We collected in situ CGT and FR samples by using a GPS linked with a 5-m expandable rod and a laser range 
finder, and then performed a post-processed differential correction that makes them have an accuracy of sub-meters.  
The dataset was eventually converted into ArcView shapefile format for later use.  The sample sizes of the two 
tree species are shown in table 1. 

 
Pseudo-absences (500 samples) were randomly generated from the study area for those models that required 

them (all except DOMAIN, BIOCLIM, MAXENT).  Two sampling designs (SD) were created for model 
development and validation through different combinations of CGT and FR samples from aforementioned two sites 
(figure 1). 
 

SD-1: we randomly selected two-thirds of Tong-Feng dataset for building “Tong-Feng base model” and the 
remaining one-third of that dataset for model validation. 

 
SD-2: we used the same base model in SD-1 and only used samples taken from the Kuan-Dau watershed about 

5 km away from Tong-Feng watershed to test the base model.  Then we evaluated the spatial 
extrapolation ability of the eight models. 

 
Table 1: The sample sizes of the two tree species. 

Species Tong-Feng watershed  Kuan-Dau watershed Sample size 
CGT 122 64 186 
FR 118 61 179 

 
To build reliable predictive models, sampling data points was repeated ten times for subsequent modeling.  

The GIS database used in the study was constructed by using ERDAS Imagine software module Layer Stack to 
overlay the layers of five environmental variables.  CGT and FR sample layers were overlaid with five data layers, 
respectively, and those pixels of the five layers lying at the same position with tree sample pixels were clipped out. 
 
3.2 Environmental variables 

 
We collected digital elevation model (DEM) of 40 m resolution, orthophoto base maps (1:10,000), and 

two-date SPOT images.  DEM was acquired from the Aerial Survey Office, Forestry Bureau of the Council of 
Agriculture, Taiwan.  To meet the requirements of the study, the DEM was interpolated and resampled into 5 × 5 
m grid size, geo-referenced to the coordinate system, TWD67 (Taiwan Datum, spheroid: GRS67) and Transverse 
Mercator map projection over two-degree zone with the central meridian 121°E. 

 
The two-date SPOT-5 images were acquired from Center for Space and Remote Sensing Research, National 

Central University (CSRSR, NCU), Taiwan (© SPOT Image Copyright 2004 and 2005, CSRSR, NCU). System 
calibration and geometric correction with level 2B were performed on the images, and then they were rectified to 
the TWD67 Transverse Mercator map projection and resampled to 5 m resolution to be consistent with the layers 
from DEM. We chose the two-date SPOT-5 images (07/10/2004 and 11/11/2005) since they have the best quality 
with the amount of clouds less than 10%. 

 
Elevation, slope, and aspect were generated from DEM by ERDAS Imagine software module.  The ridges and 

valleys in the study area were used together with DEM to generate terrain position layer.  The main ridges and 
valleys over the study area were directly interpreted from the orthophoto base maps; these lines were then digitized 
to establish the data layer by using ARC/INFO software for later use.  The data layer in a vector format was then 
converted into a new data layer in a raster format by ERDAS Imagine software module, and then combined with 
DEM to generate terrain position layer (Skidmore, 1990).  Vegetation index was derived from the two-date SPOT 
images based on the concepts stated in Hoffer (1978), and the index derived from the ratio of difference of NIR and 
MIR is expressed as followed: 

 

summersummer

autumnautumn

MIRNIR
MIRNIR

−
−  

 

(1) 



3.3 Model development 
 

Eight predictive techniques were used to build the species distribution models (table 2).  They were: (1) DT: 
decision tree; (2) DA: discriminant analysis; (3) LMR: logistic multiple regression; (4) MAXENT: based on 
maximum entropy and Bayesian probability; (5) BIOCLIM; (6) DOMAIN; (7) GLM: generalized linear model; (8) 
ML: Maximum likelihood. 
 

Table 2: Modeling technologies implemented in this paper. 

Model Core concept Data 
type Software Source 

DT Classification tree PA SPSS (Breiman et al., 1984) 
DA Discriminant function PA SPSS (Johnson and Wichern, 2007) 
LMR Non-linear probability model PA SPSS (Johnson and Wichern, 2007) 
MAXENT Entropy value and Bayesian probability PE MAXENT (free software) (Phillips et al., 2006) 
DOMAIN Continuous point-to-point similarity metrix PO ModEco (free software) (Carpenter et al., 1993) 
BIOCLIM Envelope model PO ModEco (free software) (Busby, 1991) 
GLM Non-linear regression model PO ModEco (free software) (Guisan et al., 2002) 
ML Maximize the likelihood function PA ModEco (free software) (Myung, 2003) 
* PO, only presence data used; PE, presence compared against the entire region; PA, presence and absences used.   
**For these analyses, we randomly selected 500 pseudo-absences from each region. 

 
Decision tree (DT) builds the rule by recursive binary partitioning into regions that are increasingly 

homogeneous with respect to a class variable.  The homogeneous regions are called nodes.  At each step in fitting 
a classification tree, an optimization is carried out to select a node, a predictor variable, and a cut-off or group of 
codes that result in the most homogenous subgroups for the data, as measured by the Gini index (Breiman et al., 
1984).  This criterion could set the optimum tree as a trade-off between goodness of fit on training data and size of 
the tree.  Such a classification tree is said to be full grown, and the final regions are called terminal node.  
Terminal nodes are assigned a final outcome based on group membership of the majority of observations (Breiman 
et al., 1984; De’ath and Fabricius, 2000). 

 
Discriminant analysis (DA) is a classification technique, which discriminates among k classes (objects) based 

on a set of independent or predictor variables.  The objectives of DA are to find linear composites of n 
independent variables that maximize among-groups to within-groups variability.  Then test if the group centroids 
of the k dependent classes are different.  Further determine which of the n independent variables contribute 
significantly to class discrimination.  Finally, assign unclassified or “new” observations to one of k classes 
(Johnson and Wichern, 2007). 

 
Logistic multiple regression (LMR) can be bi- or multinomial which the observed outcome can have only two 

possible types (e.g., "presence" vs. "absence" or "yes" vs. "no").  Generally, the outcome is coded as "0" and "1" in 
binary logistic regression as it leads to the most straightforward interpretation.  Where given P is the probability 
potential habitat of the tree species at a particular position, Yh is dependent variable, x1, …, xn are a set of 
independent predictor (biophysical) variables, and B0, . . ., Bn are logistic coefficients.  The output probability 
values range from 0 to 1, with 0 indicating absence (a 0 percent probability of the target habitat) and 1 indicating 
presence (a 100 percent probability).  The default threshold of 0.5 implies that probabilities above 0.5 are target 
habitat and below 0.5 are non-target habitat (Johnson and Wichern, 2007). 

 
Maximum entropy (MAXENT) is a promising new method for recent publication (Phillips et al., 2006).  

MAXENT finds a probability distribution, defined over the study area and satisfies a set of constraints derived from 
the occurrence data.  Each constraint requires that the expected value of an environmental variable (or function 
thereof) must be within a confidence interval of its empirical mean (the mean over the presences).  Among 
distributions that satisfy the constraints, MAXENT chooses the one that maximizes entropy, i.e., is the closest to 
uniform condition, as any other choice would represent constraints on the distribution that are not justified by the 
data (Phillips et al., 2006; Phillips et al., 2008). 

 
DOMAIN uses a point-to-point similarity metric (based on the Gower distance) to assign a value of habitat 

suitability to each potential site based on its proximity in the environmental space to the closest (most similar) 
occurrence location (Carpenter et al., 1993).  A threshold value of suitability can then be selected to determine the 
boundaries of the ecological niche.  Note that in contrast to all previous methods, environmental envelopes defined 
by DOMAIN are not necessarily continuous in the environmental space. 

 
 



BIOCLIM defines the ecological niche of a species as the bounding hyper-box that encloses all the records of 
the species in the core-climate (Busby, 1991).  Thus, it creates a rectilinear envelope in the environmental space, 
defined by the most extreme records (minimum and maximum) of the species on each environmental variable.  To 
reduce the sensitivity of model predictions to outliers, the species records are sorted along each variable and only 
the records that lie within a certain percentile range of the data are used for model construction.  In this study we 
applied a percentile range of 95% (disregarding 2.5% of the values on each side) (Carpenter et al., 1993). 

 
Generalized linear model (GLM) is a generalization of general linear models.  General class of linear models is 

made up of three components: random, systematic and link function.  Random component identifies response 
variable E(Y) and its probability distribution.  Systematic component identifies a set of predictor variables 
(X1,...,Xk).  Link function identifies a function of the mean that is a linear function g(μ) of the predictor variables.  
By using a logit link function that transforms the scale of the response variable, being able to relax the distribution 
and constancy of variances assumptions that are commonly required by traditional linear models (McCullagh and 
Nedler, 1989).  Consequently, the GLM model is particularly suitable for predicting species distributions, and has 
been proven to be successful in various ecological applications (Guisan et al., 2002). 

 
Maximum likelihood (ML) is assuming that the heights are normally distributed with some 

unknown mean and variance, the mean and variance can be estimated with ML while only knowing the heights of 
some samples of the overall population.  ML would accomplish this by taking the mean and variance as 
parameters and finding particular parametric values that make the observed results the most probable. In general, 
for a fixed set of data and underlying statistical model, the method of ML selects values of the model parameters 
that produce a distribution that gives the observed data the greatest probability (i.e., parameters that maximize 
the likelihood function).  Maximum-likelihood estimation gives a unified approach to estimation, which is 
well-defined in the case of the normal distribution and many other problems (Myung, 2003; Jensen, 2005). 
 
3.4 Model Evaluation 
 

Predictions of each model were compared to the validation data set to form a confusion matrix (Fielding and 
Bell, 1997), from which Cohen’s Kappa was calculated.  The kappa value range from -1 to +1, where +1 indicates 
perfect agreement and values of zero or less indicate a performance no better than random (Cohen, 1960; Lillesand 
et al., 2008). 
 

The aims of this study were to achieve the following specific objectives: (1) testing how the different 
ecological traits affect the model prediction; (2) evaluating the ability of spatial extrapolation with models; (3) 
determining which model or models are most useful for modeling distribution of a plant species.  Since the same 
measurement of model performance was calculated ten times (different modeling procedures) on each species, a 
repeated measures hierarchical design was used for testing difference in model performance. 
 

Differences between overall performance of each modeling procedure, assuming no interaction between model 
procedure and species type, were tested using the independent t-test that was used to compare for difference 
between two type species.  Bonferroni correction tests were performed for post-hoc multiple comparisons of the 
models.  Finally, we used split-sample validation for evaluating methods run under the different samplings.  The 
first one (training set) was used to build model; the other one (test set) was used to validate the model. 
 
4. RESULTS AND DISCUSSION 
 

At beginning, we integrated field survey data and overlaid five environmental variables including four 
topographic factors and vegetation index derived from SPOT-5 satellite images.  The total number of model runs 
made for this study was 2 species × 2 sampling designs × 5 predictors × 8 modeling algorithms × 10 replication, 
which results in 1,600 spatial predictions of species distributions.  Owing to a very large amount of calculations, 
we reduced the predictor-variable dimension to improve calculating efficiency.  The software module for each of 
the eight algorithms can evaluate the relative importance of five predictor variables with three predictive models for 
predicting the potential habitat of two species, as a reference for choosing the most effective variables.  Overall, 
elevation, slope and terrain position had the highest relative importance for CGT and FR, respectively.  Hence, we 
used the three variables to build predictive models. 

 
4.1 Analyses of species traits 
 

The line graph shows (figure 2) the relation between variances of techniques in model accuracy across species 
and variance of species across techniques.  Line pattern in this diagram indicates that model accuracies were 



influenced by species traits and modeling algorithms.  The variance in model accuracy across species was greater 
than that across techniques.  This result responded to those in previous studies (Thuiller, 2003).  Then we 
explored whether individual species’ characteristics could explain variation in model performance, we pooled eight 
model performances and obtained average values.  According to the independent t-test, the overall modeling 
accuracies of FR species were higher than those of CGT species (mean kappa: FR (0.66) > CGT (0.51)) and the 
ecological characteristics of the two species substantially affected the predictive performance of models (t = -9.42, 
p < 0.001).  

 
We found that CGT species has a broad and dispersed distribution, while FR species has a specialized, narrow, 

and clustery distribution, usually forming a pure forest.  Specifically, FR species was hard to compete with many 
other species in a good environment due to its slow growth rate, but it can grow in a poor environment with thin, 
acidic, and infertile soils where most species are hard to grow.  Consequently, the ecological characteristics of 
species can affect modeling accuracy, and species with a widespread distribution (or broad ecological amplitude) 
like CGT are generally more difficult for modeling than species with a clustery distribution like FR.  Our result 
was consistent with the viewpoints asserted by Guisan et al. (2007) and Stockwell and Peterson (2002). 
 

 
Figure 2: Performance of species for each technique based on  

their mean kappa ± one standard deviation. 

 
4.2 Model evaluation and comparison 

 
The figure 3 shows of performance of modeling techniques compared to the best prediction (pooled two 

species) by their mean kappa ± one standard deviation.  The patterns clearly showed that model accuracy varied 
with species.  The top three algorithms were DT (0.69), MAXENT (0.65), DOMAIN (0.65), followed by LMR 
(0.63), GLM (0.55), ML (0.53), all outperforming DA (0.51) and BIOCLIM (0.49).  The diagram also indicated 
that DT, MAXENT, and DOMAIN models had relatively small standard deviations.  BIOCLIM model had the 
highest standard deviation with respect to mean kappa and the poorest model performance. 
 

 
Figure 3: Performance of modeling techniques compared to the best prediction (pooled two species)  

based on their mean kappa ± one standard deviation. 



 
Moreover, we integrated the multiple comparisons of predictive performance (kappa) of the eight modeling 

algorithms (table 3).  We note that the profile methods (i.e. BIOCLIM) did not perform very well in predictions, 
and the model performance was significantly lower than those of other models (p < 0.001).  DT, MAXENT, 
DOMAIN and LMR belong to the same level of accuracy (non-significant in Bonferroni test p > 0.05), followed by 
GLM and ML model, and all of the previous models were much better than BIOCLIM and DA models. 

 
Table 4 indicated that predictions of DT, MAXENT and DOMAIN models generated high potential areas of 

CGTs and FRs, and substantially reduced the area of field survey to less than about 10% (1,714 ha) of the entire 
study area (17,136 ha) for CGTs, while these three models considerably reduced the area of field survey to less than 
5% (857 ha) of the entire study area for FRs.  These three models were better suited for predicting the tree’s 
potential habitat since they save both cost and labor in the future investigation.  We suggest that these models may 
be useful for conservation purpose and management tool. 

 
Table 3: Multiple comparisons of predictive performance (kappa values) of the eight modeling techniques.  

DT DA LMR MAXENT DOMAIN BIOCLIM GLM ML 
DT - 
DA ** - 

LMR n.s. n.s. - 
MAXENT n.s. ** n.s - 
DOMAIN n.s. ** n.s n.s. - 
BIOCLIM *** n.s. *** *** *** - 

GLM ** n.s. n.s n.s. n.s. n.s. - 
ML *** n.s. n.s n.s. * n.s. n.s. - 
*Bonferroni correction for multiple testing; * P < 0.05; ** P < 0.01*** P < 0.001; n.s., P > 0.05. 

 
 

Table 4: The distribution statistics of models predicting the potential habitat of the two species. 
Species Predictive area % DT DA LMR MAXENT DOMAIN BIOCLIM GLM ML 

CGT 
Habitat 3% 17% 4% 4% 9% 38% 4% 14% 

Non-habitat 97% 83% 96% 96% 91% 62% 96% 86% 
total 100% 100% 100% 100% 100% 100% 100% 100% 

FR 
Habitat 2% 23% 3% 2% 5% 13% 7% 7% 

Non-habitat 98% 77% 97% 98% 95% 87% 93% 93% 
Total 100% 100% 100% 100% 100% 100% 100% 100% 

 *Total area = 17,136 ha 
 
4.3 Evaluating the ability of spatial extrapolation with models 

 
Next, assess the spatial extrapolation ability of these models (see table 5).  We created two sampling designs 

with different spatial scales via different combinations of CGT and FR samples taken from Tong-Feng and 
Kuan-Dau watersheds in Huisun.  According to the SD-1 in table 5(b), we extended the prediction from one area 
to another and assessed the robustness of underlying relationships. As shown in table 5(c) (SD-2), the mean 
kappa values of these models declined sharply as the eight models were tested by independent samples from 
Kuan-Dau sites.   
 

Each model had a similar change by mean Kappa values, and we found two level effect of change.  First, 
models had different predicting ability and species ecological traits may affect model performance of prediction.  
Second, different sampling designs with different sample space distribution also affect model prediction.  We take 
the map predicted by MAXENT as an example and enlarged a local area with red dashed line box in Kuan-Dau 
sites to show the difficulty of spatial extrapolation (figure 4).  The figure clearly explained that “Tong-Feng base 
models” failed to pass validation by Kuan-Dau test samples despite passing validation by Tong-Feng test samples.   

 
Topographic variables are frequently used to build predictive models because they are most easily measured 

in the field and have a good relation with observed species patterns in a small spatial scale. Again, such variables 
usually replace a combination of different resources and direct gradients (e.g. climate, rainfall) in a simple way 
(Guisan et al., 1999).  However, the model performed poorly on spatial extrapolation from Tong-Feng to 
Kuan-Dau because the topographic attributes of the two watersheds are quite different from each other.  Therefore, 
the models developed from topographic variables can only be applied within a limited geographical extent without 



significant error. 
 

Table 5: Comparisons of model performance for eight algorithms evaluated by the test dataset  
for three treatments. 

(a) species  CGT FR 

(b) SD-1 Mean  
kappa Rank Standard 

deviation 
Mean  
kappa 

Rank  
base 

Standard 
deviation 

DT 0.60 2 0.05 0.78 1 0.05 
DA 0.47 6 0.04 0.55 8 0.04 

LMR 0.52 4 0.08 0.67 4 0.10 
MAXENT 0.61 1 0.06 0.69 3 0.08 
DOMAIN 0.55 3 0.09 0.74 2 0.04 
BIOCLIM 0.35 8 0.09 0.63 5 0.05 

GLM 0.51 5 0.05 0.59 9 0.05 
ML 0.47 6 0.04 0.60 6 0.06 

(c) SD-2 Mean  
kappa Rank Standard 

deviation 
Mean  
kappa 

Rank  
base 

Standard 
deviation 

DT 0.01 6 0.03 0.00 8 0.00 
DA 0.28 1 0.05 0.37 5 0.02 

LMR 0.01 7 0.02 0.43 3 0.15 
MAXENT 0.00 8 0.00 0.03 7 0.06 
DOMAIN 0.03 4 0.04 0.18 6 0.08 
BIOCLIM 0.12 2 0.10 0.41 4 0.04 

GLM 0.01 5 0.02 0.45 2 0.07 
ML 0.04 3 0.00 0.47 1 0.04 

Overall 0.51 2 0.10 0.66 1 0.10 
 
 
 

   

  
Figure 4: The lower maps are the potential habitat of CGT and FR species in Huisun generated from MAXENT 

and the upper ones are enlarged from a local area with red dashed line box in Kuan-Dau watershed. 
 



 
5. CONCLUSIONS 
 

Modeling algorithms and species traits with which species’ distributions can be modeled and predicted are 
expected to influence the accuracy.  The study illustrated a broad comparative exploration of species ecological 
characteristics with different organisms and processes responding to their environments, and the ways that these 
responses vary geographically.  The results indicated that models built based on different algorithms or for 
different species had strikingly different predictive abilities among them.  Moreover, the variance in model 
accuracy across species was greater than that across techniques.  The overall modeling accuracies of FR species 
were higher than those of CGT species and ecological characteristics of species affected predictive performance of 
models. DT, MAXENT, and DOMAIN were the three best among the eight models. 

 
More importantly, SDM models merely based on topographic variables and sample distributions 

corresponding to them could not be applied on a larger spatial scale since the topographic attributes of Tong-Feng 
and Kuan-Dau watersheds in Huisun are different.  Consequently, the predictions from models built based on 
samples only from one watershed could not be accurately extrapolated to another; however, SDM performance of 
FRs was still better than that of CGTs.  Improving model performance would be to run models on an iterative 
basis, and future work would incorporate predictor variables with soil and microclimate into a model so that it can 
be improved in accuracy and applied at a larger region. 
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