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Abstract: As the development of high-resolution satellites, the rational function model (RFM) consisting of 78 
rational polynomial coefficients (RPCs) is widely used to replace physical sensor models in photogrammetry and 
remote sensing. However, the correlation between the coefficients of RFM makes it difficult to solve the RPCs. In 
this paper, the problem of solving RPCs is converted into a problem of multiple linear regressions with serious 
multicollinearity, and a novel method based on nested regression is proposed to automatically select the proper 
RPCs. The significant coefficients of RFM are selected one by one according to the evaluation criteria of goodness 
of fit, while the redundancy coefficients are cast out, and the selected RPCs can be solved using ordinary least 
square method. Several satellite images including Quickbird P2AS, ALOS PRISM 1B2, SPOT5 HRG 1A and 
Landsat5 L2 are used in the tests, and the test results show that the proposed method could overcome the ill-
condition and rank defect of the RFM. Generally speaking, geometric correcting accuracy using the new rational 
function model with no more than 20 selected line (row) RPCs is no worse than using the original model with 39 
line (row) RPCs and ridge estimation (L-curve method), and the new model is hardly ill-conditioned. When the 
number of ground control points (GCPs) is less than 39, traditional RFM cannot be applied to geometric correction, 
while stable and accurate RPCs can also be obtained by utilizing the proposed method, and the geometric error of 
the result is less than 1 pixel. 
 
INTRODUCTION  

The rational function model (RFM) in remote sensing with 78 rational polynomial coefficients (RPCs) is a 
complete mathematical model, which approximately describes the physical imaging process in photogrammetry and 
remote sensing. Without knowing the position and orientation information of specific sensor, only plenty of ground 
control points (GCPs) are needed to solve all the unknown coefficients of the RFM and achieve high accuracies in 
the photogrammetric processing. In this sense, the RFM is suitable for high accuracy processing of different types 
of sensors, without disclosing the physical parameters of the sensor, so it is widely applied in photogrammetry and 
remote sensing. However, as the 78 RPCs of the RFM are strong correlated, stable and precision solutions of the 
RPCs are difficult or even impossible to achieve (Lin & Yuan, 2008; ZHU & JIAO, 2008). 

Scholars did extensive researches on the RFM during the past ten years. OGC (Consortium et al., 1999) normalized 
the range of the image and object space coordinates of RFM to −1 to +1, and effectively enhanced the condition 
number of the normal equation matrix. Tao and Hu (Tao & Hu, 2001) comprehensively studied the RFM and 
suggested to overcome the ill-condition of the RFM using Tikhonov regularization and the L-curve method. Yuan 
and Lin (Yuan & Lin, 2008) compared the solving results of several RPCs solving methods including ridge trace 
method, L-curve method, empirical formula method, and generalized ridge estimate method, and verified the 
effectiveness of L-curve method. Moreover, Levenberg-Marquardt methods and singular value decomposition 
method are also applied to the solution of RPCs (Fraser et al., 2006). Among all these methods, the ridge estimation 
method (especially the L-curve method) is the most widely used, and it does well in overcoming the ill-condition of 
RFM. However, there are still some problems in RPCs solving that those existing methods cannot overcome, for 
example, ridge estimate is a biased estimate, many GCPs are required to solve the RPCs, and the RFM is lack of 
physical meanings. 
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Yuan and Cao (Yuan & Cao, 2011) proposed an optimized method for selecting RPCs, which enhances the stability 
of RPCs’ solution. However, as the multiple correlations between variables are complex and no reliable evaluation 
method is available for the multiple correlations, removing some of the relevant variables often leads to increased 
interpretation error of the model, as well as discard of some information that should be retained (Geladi & 
Kowalski, 1986). 

A nested regression method according to the evaluation criteria of goodness of fit is proposed. With the help of this 
method, the significant coefficients of RFM are gradually selected, while the redundancy coefficients are cast out, 
and the selected RPCs can be solved using ordinary least square method.  

THE LINEARIZED FORM OF RFM 

RFM is a pure mathematical model, which describes the object-to-image space transformation. In order to improve 
the numerical stability of the equations, image coordinates and object coordinates are both normalized to the range 
of -1.0 to 1.0. The RFM is given as (1): 
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where r  and c  are normalized coordinates of image points in image space, while X , Y  and Z  are the normalized 
coordinates of ground points in object space. ( , , )rN X Y Z , ( , , )rD X Y Z , ( , , )cN X Y Z  and ( , , )cD X Y Z  are 

polynomials of X , Y  and Z , whose coefficients are respectively , , , ( 0,1, ,19)= i i i ia b c d i . Taking ( , , )rN X Y Z  
as an example, the polynomial is: 
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where , , , ( 0,1, ,19)= i i i ia b c d i  are the rational polynomial coefficients (RPCs). Generally speaking, 0b  and 0d  
can be set as zero after reduction of the fraction, and they are supposed to be zero in this paper if there are no other 
special explains. 

Although it is a nonlinear model, the RFM can be transformed into a linear model on all RPCs by a simple 
deformation, and the deformed linear model is shown as formula (2): 
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As the formula (2) indicates the row RPCs and the column RPCs are independent of one another, it is possible to 
solve the row-RPCs and column RPCs separately. Taking the row RPCs for example, the first equation of formula 
(2) is rewritten as formula (3): 
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When all the observation equations are collected, vector formula (4) is obtained: 
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, n  is the number of observation equations,  
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In a similar way, the column RPCs solving equations can be derived. 

According to formula (4), the RPCs solving is essentially a multiple linear regression problem, and the estimated 
value of βr may be obtained by ordinary least square method, shown as formula (5): 

 1ˆ ( )−β = T T
r X X X r  (5) 

where TX X  is the coefficient matrix of normal equation. Due to the strong correlation between the coefficients, 
TX X  is usually ill-posed. In this case, direct inverse of the matrix seldom produces accurate and stable results, and 

some ridge parameter is ordinarily brought in to reduce the ill-condition of the coefficient matrix. 
 
GOODNESS OF FIT 

The goodness of fit (Cameron & Windmeijer, 1997) of a statistical model describes how well the regression line 
approximates the observation data. Measures of goodness of fit typically summarize the discrepancy between 
observed values and the values expected under the model in question, including coefficient of determination and 
lack-of-fit sum of squares (Neter et al., 1996). In this paper, the coefficient of determination is used as the statistical 
measure of goodness of fit. 

The coefficient of determination is the proportion of the regression sum of squares in total variation, and it is given 
as formula (6): 
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where n  is the number of observation, iy  is the thi  observation value, y  is the mean of all the observation values, 
ˆiy  is the regression result of the thi  observation. The value of 2R  is in the range of 0  to 1 . The greater is the value 

of 2R , the better does the regression line approximate the observation data, and the more suitable is the model 
(Hao, 2011). 
 
OPTIMIZED SELECTION OF RPCS BASED ON NESTED REGRESSION 

The concept of nested regression (Lin, 2008) is to divide the procedure of regression into several steps, and in each 
step, one variable that fits the objective vector best is selected from the variables set. When all the remained 
variables in the variables sets are not significant to the objective vector, the procedure of nested regression is 
finished. 
Taking goodness of fit (coefficient of determination) as the evaluation criteria, modified nested regression method 
is used to optimal select the rational polynomial coefficients. And the procedure of the method is as following: 

Step 1: Let the convergence thresholds 1t 0.5 / scale= , and 2t 0.05 / scale= , where scale  is the magnification for 

coordinates normalization. Let 1=k , =kr r , and no  is the number of observations, and nv  is the total number of 
RPCs. Then turn to step 2; 

Step 2: Together with kr , iX  (where ~≠i (1) (k-1)X X X ) is successively used to build the linear regression models: 



 0 1β β= + + εk k ik kr 1 X  (7) 

The coefficient of determination of each model is respectively calculated. Supposing the coefficient of 
determination of the model corresponding to (k)X is the maximal one among all the coefficients of determination, 

formula (8) is derived from the model corresponding to (k)X  using ordinary least square regression: 
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Then turn to step 3; 

Step 3: If >k no  or >k nv , turn to step 4; otherwise the residual vector is 1
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root mean square error is /σ = T
k nok kv v . If 1σ <k t  and 1 2σ σ −− <k k t , turn to step 4; otherwise let 1= +k k , 

and turn to step 2; 

Step 4: optimized variables set { }| 1, 2, ,= m k(m)X  is obtained, and ordinary least square method is used to 

regress the model(9), and the regression result is given as formula (10): 

 0 1 2β β β β= + + + + + ε k(1) (2) (k)r 1 X X X   (9) 

 0 1 2
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The coefficients those corresponding to (m)X  in βr are set as β̂m  (where 1,2, ,= m k  ), and the other coefficients 

in βr  are set as 0 . After that, the procedure of calculating the RPCs is finished. 

EXPERIMENTAL RESULTS 

In this section, two groups of tests are used to demonstrate that the proposed approach does indeed provide a 
practical way to get the optimal solution of RPCs. 

1.  Overcome the ill-condition of RFM 

A scene of SPOT5 HRG 1A imagery in Beijing district of China, whose spatial resolution is 2.5 meters, is used in 
this test. 120 GCPs are well distributed in the range of the imagery, and 60 of them are evenly selected as 
observation data, while the other are used as check data. Three methods, including ordinary least square estimation, 
ridge estimation and nested estimation proposed in this paper, are applied to the calculation of the RPCs, and the 
check data are used to check the precision of the solutions. Table 1 shows the comparison of the results. 

Table 1: Accuracy comparison of solution of three methods with 60 GCPs 

 
root-mean-square (RMS) error / pixel 

least square regression ridge regression nested regression 
row column row column row column 

GCPs 0.117 0.152 0.346 0.157 0.539 0.422 
check points 2.64 0.675 1.25 0.87 0.685 0.79 

According to table 1, although the least square estimation approximates the observation data well, the row RMS 
error of check data is more than 2 pixels. The reason is that the RPCs are not independent for the observation data 
and the model with 39 row (or column) RPCs is multicollinear and ill-conditioned, resulting the overfitting of 
observation data, as well as the instability of solution. The ridge parameter in ridge regression helps ameliorate the 
ill-condition of the model, and improves the stability of solution. However, the ridge regression does not cast out 
any unnecessary RPCs, and the row RMS error is still large. The nested regression gives stable results, and both the 



row and column RMS errors are less than 1 pixel. In fact, a number of unnecessary RPCs are cast out during the 
nested regression, and the simplified model is given as: 
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Comparing to formula (1), which contains 78 rational polynomial coefficients, formula (11) with only 18 
coefficients is much more interpretable, and it shows clearly which physical quantities play important roles in the 
rational function model. Moreover, the row model is not necessarily the same as the column model, and the method 
of nested regression may adaptively build the suitable parsimonious models according to the observation data. 
 
2. Rank Deficient Normal Equation 

A scene of ALOS PRISM 1B2 imagery in Fujian district of China, whose spatial resolution is 2.5 meters, is used in 
this test, and 20 GCPs and 20 check points are prepared for this imagery. Three methods, including ordinary least 
square estimation, ridge estimation and nested estimation proposed in this paper, are respectively used to calculate 
the RPCs, and the check points are used to check the precision of the solutions. Table 2 shows the comparison of 
their results. 

Table 2: accuracy comparison of solution of three methods with 20 GCPs 

 
root-mean-square (RMS) errors / pixel 

least square regression ridge regression nested regression 
row column row column row column 

GCPs 0.0 0.0 0.000095 0.000058 0.238 0.177 
check points 11633.79 11561.21 841.72 851.81 0.644 0.144 

When conventional methods (least square regression and ridge regression) are used to solve the row (or column) 
RPCs, there are 39 unknown variables, and no fewer than 39 GCPs are needed. As the rank of normal equation is 
deficient (fewer than 39), least square regression and ridge regression both fail to provide reliable solutions. By 
selecting significant RPCs from the full RFM (containing 78 RPCs), however, nested regression is able to provide 
reliable solutions of RPCs, and the RMS errors are both less than 1 pixel. The simplified RFM is given as: 
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According to formula (12), most of the coefficients in the full RFM are not necessary, and 20 GCPs are sufficient 
for the parsimonious model. 

To verify the validity of the proposed method, some other tests are carried out on various satellite images including 
Quickbird P2AS, ALOS PRISM 1B2, SPOT5 HRG 1A and Landsat5 L2. Although the numbers of selected RPCs 
vary with the images, all the tests yield similar results, which indicate that the full RFM can be simplified into a 
new model of no more than 20 coefficients by means of optimized selection without reducing the accuracy of the 
full RFM. Moreover, the simplified models are much less likely ill-conditioned compared to the full RFM, and 
therefore more stable when applied to geometric correction. 

 
CONCLUSIONS & RECOMMENDATIONS 
The full RFM contains 78 RPCs, and the multicollinearity of the RPCs raises some critical problems, including the 
ill-condition and rank defect of the normal matrix. In this paper, the problem of solving rational polynomial 
coefficients is converted into a problem of multiple linear regressions with multicollinearity, and a complete 
methodology of automatically selecting and solving RPCs based on nested regression is proposed. By means of 
analysis of the observation data (GCPs), the proposed method casts out the unnecessary RPCs, and builds a 
simplified model. Both problems of ill-condition and rank defect are solved by the proposed method. Compare to 
the conventional methods (least square regression and ridge regression), the proposed nested regression provides a 
more stable and accurate solution when the observation data are sufficient. When the observation data are not 



plenty enough for the 78 unknown RPCs, reliable solutions are not available for the conventional methods. 
However, the proposed nested regression can provide reliable RPCs solution using fewer than 39 GCPs. In this 
sense, the proposed method would be quite useful when sufficient GCPs are not available. Moreover, the simplified 
RFM clearly shows which coefficients in the full RFM are significant for the individual imageries, and it helps to 
understand the imaging process. 
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