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Abstract: The flood disaster generally leads to infectious disease outbreaks especially diarrhea frequently having a 
maximum rate of patients during flood occurrence. Flood water contaminated with pathogen closely relates to the 
epidemic risk of waterborne infectious diseases, therefore measuring water quality in inundated area can lead to 
estimate the epidemic risk due to flood. We focus to utilize dissolved oxygen (DO), which is a well-known 
chemical indicator of environmental water quality. Remote sensing especially radar imagery has an effective 
capability to detect water variables and also widely uses for determining flood parameters. This study aim to assess 
the epidemic risk of acute watery diarrhea by using remote sensing and the water quality sampling based on 
multilayer perceptron (MLP) function. The multiple temporal Radarsat2 images are used to determine flood area 
and duration during September to December 2011 in Ayutthaya province located on Chao Phraya river basin most 
severely affected by the 2011 major flood in South East Asia. The reference of epidemic risk derives from the 
weekly report of diarrhea morbidity from entire hospitals in study area when assume that the more than 50th 
percentile of weekly morbidity rate are epidemic period. To define input layer of MLP, the main parameters 
composing of flood duration, population density and dissolved oxygen are simulated to 50-m resolution and divided 
by each district area. The input and output layer are randomly divided into two parts: 66% for training and 34% for 
testing. After model training, the predicted epidemic risk of each district has correlation coefficient between 0.70 to 
0.91 and RMS error between 0.012 to 0.045. Therefore, we conclude that based MLP algorithm we can assess the 
epidemic risk of acute watery diarrhea due to flood and the output risk map should also assist the decision maker to 
prevent and relieve the epidemic.  
 
1. INTRODUCTION 
 

The 2011 monsoon season, Southeast Asia region faced a major flood event particularly in Thailand, having 
more than 700 reported deaths with over 12.8 million people were affected, and the World Bank estimated damages 
reached $US 45 billion. When flash floods occur, people in inundated area frequently suffer from waterborne 
infectious disease during and after flood occurrence (Schwartz et al., 2006). Bureau of Epidemiology of Thailand 
reported most severe infectious disease outbreaks such as diarrhea, fever, pneumonia, conjunctivitis, dengue fever, 
leptospirosis and hand-foot-mouth disease, and the report showed that the morbidity rate of diarrhea had the 
maximum increment. The main cause of such epidemics is dirty flood water which people suffered from flood 
become infected through drinking, cooking and contact including via indirect way such as unclean food or drink 
container. Therefore, if we can identify the spatial information of the polluted flood water, it should be lead to 
assess waterborne disease risks in inundation area.   
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To determine flood parameters, remote sensing has been used for water detection and characterization for 
decades, as well as radar data is very effective for extracting flood area, duration and depth in many papers. There 
are a number of researches attempt to utilize remote sensing so as to assess the disease risk. Beck et al. (2000) 
illustrated an increasing number of health studies have used remotely sensed data for monitoring, surveillance, or 
risk mapping and also expressed two case studies such as Lyme disease in the Northeastern United States and 
cholera in Bangladesh. Lleo et al. (2008) reviewed that remote sensing and waterborne diseases can predict cholera 
epidemics by monitoring sea surface temperature and sea surface height via earth observing satellites, and can also 
predict Rift Valley fever (RVF) outbreaks up to five months in advance in East Africa using Pacific and Indian 
Ocean sea surface temperature anomalies coupled with satellite normalized difference vegetation index (NDVI) 
data. Kazama et al. (2011) simulated the coliform bacteria distribution in Cambodia using a hydraulic model and 
estimated the impact of inundation on public health using a dose–response model. However, no studies have tried to 
model the epidemic risk of diarrhea due to flood disaster in term of spatial-temporal prediction.  

The multilayer perceptron (MLP) with a supervised learning technique called back propagation neural network 
(BPNN) has been widely used to estimate the risk in disaster field. For example, Bai et al. (2005) provided the 
method of predicting BP neural networks for SARS epidemic to improve the existing computational methods. Cao 
et al. (2010) investigated the potential epidemic disease risk after earthquake based on BPNN with normalized 
difference vegetation index (NDVI) and normalized difference water index (NDWI) of remote sensing images. This 
study aims to utilize MLP or BPNN function with flood parameters for modeling the epidemic risk of diarrhea due 
to flood. 
 
2. STUDY AREA AND MATERIALS 
 

2.1 STUDY AREA  
 
Our study area covers 8 districts of Ayutthaya province locating on Chaophraya river basin which most 

affected by the 2011 major floods in Thailand. The districts, called “amphoe” in Thai, of the study area compose of 
Phra Nakhon Si Ayudhya, Bang Chai, Bang Pa-in, Bang Pahan, Phak Hai, Sena, Bang Sai and Uthai shown in 
Figure 1 (right). Bureau of Epidemiology of Thailand reported that these districts faced epidemic infectious disease 
during flood disaster especially diarrhea. Being full of river and canal expressed in Figure 1 (middle) is the main 
cause that these areas frequently are affected from flood almost every year. The study area covers 1,423.28 square 
kilometers with population currently estimated at around 484,439 people. 

 

 
 

Figure 1. Left: the study area locates in Ayutthaya province at Chao Phraya river basin 
(www.mapsofworld.com); Middle: the river canal network in our study area; Right: the 8 districts (amphoe) of the 

study area with its population 
 

2.2 MATERIALS 
 
Six Radarsat2 scenes ScanSAR narrow mode with 50-m resolution acquired on (1) 9 September 2011, (2) 3 

October 2011, (3) 21 October 2011, (4) 14 November 2011, (5) 4 December 2011, and (6) 28 December 2011 were 
used to determine flood area and duration. We applied 186 water quality samplings of Pollution Control 
Department of Thailand during flood occurrence for estimating dissolved oxygen value in inundated area. The 
census block of each commune, called “tambol” in Thai, was utilized to calculate population density shown in 
Figure 2 (left). The surveillance weekly reported of Bureau of Epidemiology of Thailand was used for estimating 
the diarrhea morbidity of each district during flood expressed in Figure 2 (right). 
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Figure 2. Left: Population density per 1 sq.km. estimated by the census block of each commune (tambol); 
Right: the diarrhea morbidity of each district (amphoe) during flood disaster (week 36-52, 2011) 

 
3. METHEODOLOGY 
 

3.1 FLOOD PARAMETERS DETERMINATION 
 
To extract flood area, the maximum likelihood with supervised classification was used to extract water of six 

Radarsat2 scenes, and then we therefore define inundated area by overlaid with surface water layer. Figure 3 
expresses that flooding began approximately in week 36 (left), peaked in week 46 (middle) and abated in week 52 
(right).   

 

   
Figure 3. Flood area extracted from Radarsat2 scenes on October 28 (left), November 14 (middle) and 

December 28 (right), 2011  
 
Subsequently, we estimate flood duration of each area by comparing flood areas of six Radarsat2 scenes. The 

flood duration map expressed in Figure 4 (left) illustrates the entire study area suffered from flood during 1-121 
days.  

 

   
 
Figure 4. Left: flood duration map of our study area between week 36-50 in 2011; Right: Dissolved Oxygen 

map in study area estimated from 186 flood water samplings by using inverse distance weight (IDW) function 



For estimating flood water quality in the study area, we focus to utilize dissolved oxygen (DO) value as the 
water quality indicator of this study. We applied 186 flood water sampling collected in Ayutthaya province to 
evaluate DO map in the study area by using inverse distance weight (IDW) interpolation shown in Figure 4. 

 
3.2 EPIDEMIC INVESTIGATION 
 
As the weekly diarrhea morbidity of entire hospitals in the study area in 2011, we can plot the weekly 

morbidity rate per 100,000 people as shown in Figure 5 (left). In our case, we define the onset of epidemic as the 
weekly morbidity rate per 100,000 populations exceed the median or 50th percentile of weekly morbidity rate per 
100,000 populations in 2011 in the study area (Schwartz et al. 2006, U.S. Department of Health and Human 
Services 2006). As the graph in Figure 5 (left), we found that in 2011 the study area has two main periods of the 
diarrhea outbreaks that are during week1-11 and during week 38-51. After questioning the officers of the ministry 
of public health, we found that the first period of the outbreaks at the beginning of the year is probably a result of 
the long celebrations on New Year festival, frequently drinking alcohol or eating unhygienic food. Therefore, we 
only focus to the second period of outbreak occurring during the flood period. 

Moreover, we attempted to find the temporal relationship between flood and epidemic by comparing the 
second period of epidemic with flood area of radarsat2 scenes. The graph of flood area in figure 5 (right) expressed 
a very close relationship of flood area and epidemic intensity. While flooding started, peaked and abated in week 
36, 46 and 52 respectively, the second epidemic period also started at week 38 although in week 39, 40 and 43 were 
not in epidemic period but it became peak in week 46 and also abated in week 52.   

 

  
Figure 5. The epidemic investigation of the weekly morbidity rate of diarrhea per 100,000 populations at 50 th 

percentile (left) compared with flood area and duration in the study area (right) 
 
Subsequently, we define the reference epidemic risk by averaging the weekly morbidity rate during flood 

(week 36-52) and comparing with the 50th percentile of morbidity rate per week in 2011. Nevertheless, these risks 
are only representative one value per district as the location of its hospital. Therefore, we used this risk set to 
interpolate the epidemic risk of entire area by using inverse distance weight (IDW) function as shown on figure 8 
(left). 

 
3.3 MULTI-LAYER PERCEPTRON AGORITHMS 
 
Multilayer perceptron (MLP) is an artificial neural network model that maps sets of input data onto a set of 

appropriate output. MLP utilizes a supervised learning technique called backpropagation neural network (BPNN) 
which is the most popular neural network algorithm (Han et al. 2006). It consists of an input layer, one or more 
hidden layers, and an output layer as shown in Figure 6. The key component of MLP is the formal neuron, which 
sums the inputs, and performs a non-linear transform via the activation function (Kanevski et al. 2004).  

For training phase, we used three main flood parameters such as flood duration, dissolved oxygen and 
population density as the input layer and we randomly selected 66% of reference epidemic risk as the output layer. 
The appropriate number of hidden layer in each district is the most important on this step. The synaptic weights of 
the feedforward network are adjusted by using supervised learning to minimize the error between the network 
output and the desired output (Chang et al. 2010). After training, the weights are fixed and the input value is 
propagated through the network until it reaches the output layer. Then the testing phase was carried out by using the 
trained model with remain input data comparing with remain 34% of reference epidemic risk data. 

50th percentile detection 



 
 

Figure 6. The basic layers of multi-layer perceptron such as input, hidden and output layer (Witten et al., 2005) 
 

4. RESULTS 
 
 Table 1 demonstrates  the number of hidden layer, correlation coefficient and RMS error of MLP testing data 
divided by each district. The proper hidden layer number we carried out is between 3-8, while correlation 
coefficient and RMS error are between 0.70–0.91 and 0.012-0.045 respectively.  
 

District (Amphoe) Population Area(km2) Hidden layer Correlation coefficient RMS error 

Phra Nakhon Si Ayudhya  139,129  117.82 7 0.74 0.028 
Bang Chai  47,083  250.03 4 0.79 0.040 
Bang Ban  34,379  136.75 8 0.83 0.025 
Bang Pa-in  90,188  237.10 9 0.86 0.012 
Bang Pahan  41,313  130.96 7 0.89 0.045 
Sena  66,122  215.28 3 0.83 0.035 
Bang Sai  19,685  164.72 5 0.91 0.020 
Uthai  46,540  170.62 8 0.70 0.033 

 
Table 1. The statistical error and precision of MLP output divided by each district 

 
 We examined the precision of MLP prediction by plotting graph between the predicted MLP risk and reference 
risk. Figure 7 represent that the scatter plot of Bangpahan, Bang sai and Bangban have R value of 0.89, 0.91 and 
0.83 respectively. 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 7. The scatter plot between the diarrhea epidemic risk derived from hospital morbidity report (reference) and 

MLP prediction risk in Bangpahan (left), Bangsai (middle) and Bangban (right) district 
 

 Finally, we determine the prediction map of diarrhea epidemic risk from the output of MLP testing phase as 
shown in figure 8 (right). There are high risk in Bangban and Sena, low risk in Bang chai and Bang pa-in and 
moderate in other district. This trend has a good relation with flood duration and DO map in Figure 4.  

   



   
 

Figure 8. The MLP predicted map of diarrhea epidemic risk (right) compared with the risk calculated by morbidity 
rate of hospitals in study area during flood occurrence 

 
5. DISCUSSION AND CONCLUSION 
  
 Based on MLP approach, we have gained agreeable accuracy and precision to assess the epidemic risk by using 
remote sensing data and dissolved oxygen sampling of diarrhea. The most advantage of this approach is using only 
three input factors to calculate the risk. This means we can predict the epidemic risk in advance on any local area, 
and decision-maker is also able to use this tool to prevent, response and relieve the epidemic. However, in flood 
disaster also have many other factors affecting epidemic such as emigration, hygienic condition of local people, 
flood intensity and etc. Moreover, the limitation of morbidity data or reference data should affect the accuracy of 
model. Therefore, in further research we can more study on the other factors relating to epidemic due to flood 
disaster.  
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