THE EVALUATION OF EXTERIOR ORIENTATION PARAMETERS FROM GLOBAL POSITIONING SYSTEM AND INERTIAL MEASUREMENT UNIT IN THE TEST FIELD

*Maj. Suporn Puengnate Col. Saranpong Pramsane The Survey School, Royal Thai Survey Department E-mail: jcrma_50@hotmail.com E-mail: prammicester@hotmail.com

KEY WORDS : position accuracy; exterior orientation parameters; direct geo-reference; GPS/IMU

ABSTRACT : With direct geo-reference approach through using Geographic Positioning System integrated with Inertial Measurement Unit(GPS/IMU), map production earns a number of benefits such as cost reduction in field survey, less time consumption in mapping process and ability to map in difficult terrains. The objective of this study is to compare processing of Orthophoto product, 1: 25,000 scale, between using exterior orientation parameters obtained from GPS/IMU and applying Photogrammetric approach, then to assess the horizontal accuracy of those products in term of map scale. By using NSSDA standard test method, together with ASPRS standard, upon 46 check points specified on the approved survey test field, it is found that the root means square error of horizontal position calculated as 0.9960 meter, which further evaluated in the aspect of accuracy within 1:4,000 map scale or better.

INTRODUCTION

Geospatial data is considered as fundamental part of geographic information system also know as GIS. In particular, Orthophoto, widely used in GIS applications, which is produced from digital Photogrammetry.

With this approach, through using Geographic Positioning System together with Inertial Measurement Unit (GPS/IMU), Exterior Orientation(EO) parameters directly obtained during aerial photography collection are to be used in Direct Georeference(DG). As a result, ground control point, used in Aerial Triangulation process, can be cut down.

The objective of this study is to evaluate horizontal accuracy of 1: 25,000 Orthophoto, produced from direct geo-referencing Photogrammetry, which is to be used in producing large scale maps. Furthermore, for accuracy evaluation, this study applies US standard of measure used in geospatial data and root mean square error(RMSE) indicating accuracy in term of map scale from ISPRS standard.

In this study, aerial photography campaign are conducted by using Zeiss RMK TOP camera equipped with GPS/IMU, flight attitude parameters are thus recorded together with each exposure. Located at Chulachomklao Royal Military Academy, Nakonnayok province, study area used in this research (Promtong,2008) was approved as a survey test field covering with scattering known points on the ground.

METHOD

This study is to compare Exterior Orientation parameters between Direct Georeference and those Exterior Orientation parameters obtained from aerial triangulation in the process of producing 1:25,000 Orthophoto (Wolf, 2002). Then evaluation of horizontal accuracy of the Orhtophoto, using selected 20 ground control points (GCPs), is to perform on the study area. Aerial photos, used in this study, were taken with Zeiss RMK TOP camera with 150 mm. focal length. Using 60 % forward overlap and 30 % side overlap, 15aerial photos covering study area were acquired in generating orthophoto as seen in figure1, also study area on corresponding map in figure2.

ACRI

Figure 1 Aerial photos covering study area

Figure 2 Map shows study area

Located on study area with clearly visibility on the aerial photos, there are 20 GCPs to be used in this study. In addition, check points were chosen according to FGDC 1998 standard such that at least 20 check points were required and they should spread out evenly around 10 points in each quadrant of the study area. Besides, each check point in each quadrant also located at least 1.71 km., around one tenth of diagonal length of study area, which is 13.27 km. as referred to figure 3.

Figure 3 Ground control points and check points on the study area

In the process of producing orthophotos, Digital Terrain Model (DTM) was created from height data collected from stereo model in photogrammetry process. Final product, orthophoto, can then be accomplished through using DTM together with Relative Orientation parameters in photogrammetry instrument. Other issue, in this study, datum and coordinating system of GCPs and check points are: WGS84, WGS84 together with UTM zone47 for horizontal coordinate, and orthometric height for vertical coordinate. Horizontal coordinate values of check points in the study area obtain through using GPS measurement, and vertical coordinate is collected by using Ellipsoidal height of those check points then converted to orthometric height, with Geoid separation average -28.786 meter. Process flow of two comparison approaches : Direct Georeference and Photogrammetry, is illustrated in figure 4.

Figure 4 Process flow of Direct Georeference and Photogrammetry used in this study

Applying National Standard for Spatial Data Accuracy (NSSDA), position accuracy evaluation of this study calculates RMSE values from those check points and then proceeds further in accuracy result in term of map scale. Furthermore, the discrepancy of position against corresponding ground position, and the accuracy results from calculation described in confidential level, this used method claims accuracy at confidential level of 95 %.

Usually, positional accuracy test will conduct against references whose accuracy degree is more superior. In this study, coordinates of those check points are measured in the field by using GPS receiver, then comparing them against coordinates of corresponding points upon orthophoto product. With this principle, this study conducts coordinate test of selected 46 check points, scattering over study area, which results in spreading of errors all over the target area.

TEST STANDARDS

This study includes following well known criteria as follows :

1.NSSDA from Federal Geographic Data Committee(FGDC) which provides horizontal accuracy by computing RMSE value using following equations (Federal Geographic Data Committee, Geospatial Positioning Accuracy Standards, 1998) :

 $\begin{array}{lll} RMSE_{x} &= \mbox{ sqrt} \left[\Sigma \left(X_{data \, i} - X_{check \, i} \right)^{2} / n \right] & (1) \\ RMSEy &= \mbox{ sqrt} \left[\Sigma \left(Y data \, i - Y check \, i \right) 2 / n \right] & (2) \\ \mbox{ where } & RMSE_{x} \mbox{ is Root Mean Square Error of x axis and} \\ & RMSE_{y} \mbox{ is Root Mean Square Error of y axis.} \end{array}$

 $\begin{array}{ll} X_{data\,i}\,,\,Y_{data\,i} & \text{are coordinate of point i in the test product} \\ X_{check\,i}\,,\,Y_{check\,I} & \text{are coordinate of reference point i, obtained from field measurement n is number of test points} \end{array}$

Horizintal error of point i is calculated as follows: $sqrt \left[(X_{data i} - X_{check i})^2 + (Y_{data i} - Y_{check i})^2 \right] \quad (3)$

$$\begin{split} RMSE_{r} &= sqrt \left[\Sigma \left(\left(X_{data i} - X_{check i} \right)^{2} + \left(Y_{data i} - Y_{check i} \right)^{2} \right) / n \right] (4) \\ RMSE_{r} &= sqrt \left[RMSE_{x}^{2} + RMSE_{y}^{2} \right] (5) \end{split}$$

Positional accuracy according to NSSDA standard can be obtained as follows: accuracy_r = $1.7308 * RMSE_r$ (6)

2.American Society of Photogrammetry and Remote Sensing(ASPRS) 's standard. This standard, under supervision of ASPRS specification and standard committee, specifies accuracy standard for 1: 20,000 map and larger scale used for engineering task. Using RMSE value to assess map accuracy into classes: class1, 2 and 3, ASPRS standard defines maps under class2 should possess RMSE value more than 2 times that of class1, and maps under class3 should have RMSE value more than 3 times that of class1.ASPRS standard, for planimetric feature coordinate accuracy requirement, evaluates horizontal coordinates along x and y axis according to calculated RMSE value from those well defined points of target map as illustrated in table1.

Target Map Scale	ASPRS (Meters)	Limiting RM	/ISE in X	or Y
Ratio m/m	Class 1	Class 2	Class 3	
1:500	0.125	0.25	0.375	
1:1,000	0.25	0.50	0.75	
1:2,000	0.50	1.00	1.5	
1:2,500	0.63	1.25	1.9	
1:3,000	0.75	1.5	2.25	
1:4,000	1.0	2.0	3.0	
1:5,000	1.25	2.5	3.75	
1:8,000	2.0	4.0	6.0	
1:9,000	2.25	4.5	6.75	
1:10,000	2.5	5.0	7.5	
1:16,000	4.0	8.0	12.0	
1:20,000	5.0	10.0	15.0	

Table1 Horizontal accuracy standard from ASPRS

ASPRS Planimetric Feature Coordinate Accuracy Requirement (Ground X or Y) for Well-Defined Points

From table1, it can be stated, for instance, class1 map should have RMSE of horizontal coordinate within 1 meter, which corresponds to map accuracy equivalent to 1:4,000 map scale.

IMPLEMENTATION

Using study area at CRMA, Nakonnayok province, covering around 120 square kilometer, this research collects EO parameters of each aerial photo, using GPS/IMU during taking aerial photo. These EO parameters are compared with those measured from Photogrammetry process using 20 GCPs upon the same target area. In this step, orthophotos with 1:25,000 map scale, as final product, are generated by those two approaches: direct georeference and Photogrammetry. Then, further step is to proceed for accuracy evaluation by measuring coordinates of selected 46 check points scattering properly, according to NSSDA specification, in the study area as seen in figure 5. The results of x,y coordinates of those check points are forwarded to evaluate on geospatial data accuracy using NSSDA standard of FGDC. Furthermore, RMSE of horizontal coordinates of those check points are proceeded for accuracy checking with ASPRS standard in order to find out classification of map accuracy and corresponding map scale.

Figure 5 Display of coordinate reading from one of those check points

RESULTS

Results from conducting accuracy evaluation of EO parameters from GPS/IMU or direct geo-reference from this study can be concluded as follows:

1.From calculation of 46 check points selected according to NSSDA standard, RMSE of horizontal coordinates(RMSExy) is 0.996 meter, which is equivalent to horizontal accuracy of 1.724 meter(NSSDA) with 95% confidential level, as seen more detail in table 2.

2.As the result of horizontal coordinate accuracy RMSExy 0.996 meter of orthophoto product from direct geo-reference, the accuracy of this product is classified as Class1, according to ASPRS standard. With this standard, the result of horizontal accuracy can be defined in map scale of 1:3,984. In other words, the orthophoto, as product of this study, can be used to generate large scale map of 1:3,984 or smaller map scale products.

Point	Port	Locing	Nathing	Lawing	Not	n g				
aug ter	description	underse de til	Independent)	deat	(be)			(an in s).		201 (01 VV)
	100 Server	(STAL)	15/1215 5/6	251125 241	14/12	ау 11 сл	1.725	1.510	110	1.428025
2	10/3244/	721205 251	1576710 506	724202-665	107571		1.055	1 504	1 5220	0.401923
-	1053/01/2	720005-107	157036-513	725060 451	157316	0.075	0.555	0.470	6 177	0.011129
	104110	/1/24/ 24	3/00/3/1	70296107	14/90/	Y GET	1021	0.445	0.33	0.0009
	10.1010	(2)(12,59)	1000000000	72601 973	141045	140	1.012	101	0.00	0.101708
	UN HEAV	/300/1105	1551-052-025	251081-118	1550.0	1.00/	-1.175	1.423	0.162	0.028341
7	10524497	726536 531	1550710 827	725555 742	15227	2.22	-1.189	1.414	-0.607	0.368449
3	10525HV	730314,559	1550461.228	730315,783	158246	0.557	1.224	1,498	0.641	0.410581
	21700117	734075.456	1570047-596	734079.063	157304	0.412	0.103	0.011	0.817	0.667409
10	21/21/11/	79.414 645	1/067.455	79,412,948	14/51	1141	1111	174	0.916	0.4644.79
11	21/01/11/	791770 816	15/5/11/18	0101208	15/2/1	1.601	0.442	0.105	-0.100	0.0290311
12	21 (94449)	7.9407.007	1551 (75.355	6901726	155012	5.054	0.271	0.049	0.00	G 10555
13	2172BHV	73/702/431	1523007-657	7347(0.683	15530	96 7 2 9	.1.743	3 038		0.917764
14	31000 IV	730706,546	1680123-681	738705.299	158012	2.975	0.647	0.419	0.646	0,417316
		AUR. 10	1100-001-00	concernence and		1.415	4.012	0.478		5.0500.0
19	21012117	730425.130	1000402.75	C 20404 (404	100040	2,415	0.002	0.420	0.0252	0.0000000
	100000		Pointesore	200112-002	19761	1.014			0.00	0.000000
		Catholestero	terante car	A SPECIAL SPEC	The second					a contract
10	21040512	720134 151	4594640-754	200100-200	100404	1 6.11 0 6.72	A 200	0.000	0.0007	0.007244
19	9001	720701.701	4579/20 101	207400-45	100101	0.075	40.520	0.000	4.000	0.007344
	7002	121420.001	10.0010.000	121400.47	Turber	2.464	1.721	1.252		2.020572
21	9003	72/033/215	6//606.417	72/000.045	167760	4.075	2.17	0.025	0.5421	0.293072
22	9004	727022.685	15/5044.880	/2/021.982	157504	6.038	9.717	0.514	0.1409	0.020707
20	9006	720766-030	N822-CL088-	738.495,149	14.8224	1912	0.114	0.012	116	1.000649
24	1007	(2943) (3	15212570 152	772483 485	1.500.090	a 507	-0.241	0.051	-0 5550	0.396522
20	3008	7.99.35 7.99	158003402	730437 375	156010	8 817	1 167	1.591	-0 5252	0.302059
20	7009	720257,465	15/85/4.715	725253.145	157857	4.120	0.658	0.455	0.0105	0.000112
21	9010	730476.355	15/140612/10	730476.804	157763	1.025	0.445	0.190	0.4519	0.204214
		20161220	P. 94 100 200	7101611247	1975.0		0.010			0.000
	1015	124560-56	Location cost	100000-000	157.68		-4.045		0.2010	100.5112
- 30	3614	728185 717	1102/000 202	702500 (47	100200	0.045	0.004	0.000	4 4 4 4 4	1 440070
5	9015	739735.275	1082100.021	701700.000	100210	2.552	-0.221	0.050	-1.1915	1/106/2
	9010	730072.351	1000070.110	733032,402	198694	2.100	0.041	0.002	2.3271	0.107.357
	2410	1000101000	NUMBER OF	125010.054	100000		0.921	0.002	5 20 M	0.454051
	1015	/2017/1725	151 (241,278)	/349/0 254	157.126	1 000	-1.525	2.328	-0 128s	II OTSKAN
			and the state	and the second second						
	9020	702936,409	1575809.002	102506.157	197981	0.164	0.252	0.064	0.0618	0.130699
37	8021	ALCONDARY STR	16703101329	101/071 0120	11.6.28	0.002	1 0006	1 0.0	0.0785	0200112
	3122	73557-00 BIN	1019123-003	732740 783	15/648	a 2001 A 400	-0.321	0.005	1.2552	1 55/095
	3923	720466 600	1002100-005	100454 600	400100	a 100	40.000	0.011	-1 94/5	0.00125
40	2024	732155.585	1000047.000	737154,602	106163	0.000	0.538	0.972	0.093	0.08744
	5020	7 0002.412	1000001.202	201021.044	100000	0.040	0.020	0.394	0.013	0.576628
	1000	210-02-024 210-02-020	ALCONTRACTOR	CLOCK INT	1.000	0.025	11.290	0.000		
	1141	142601-042	The control of the	LACONS 164	10.000	- 161 1.422	40.00	0.00	1.60	11 62212
	3031	782277 674	1673666-014	737576, \$24	167200	6 565	.0.7/	0.5/2	0.6454	0.410112
40	2021	733434.00	1001162-045	700424-444	100145	9 604	0.179	0.010	0.9101	0.050000
49	5004	12212-128	1201102-040	eum	120112	27	7 108	SILM	0.247	18 5216
				average		21	580	avorad	10	0.0210
				DMSEx			.009	average	je	0.40204
				RMSE	. X	0	.100	RMSE	У	0.03454
								RMSE	: ху	0.99596
								MCCD		1 70004

Table 2 Result of horizontal coordinate evaluation of orthophotos using NSSDA standard

- 7 -

...!

CONCLUSION

The result of this study proves that horizontal accuracy of map product through applying direct georeference, 1: 25,000 orthophoto, can be classified into map scale as1:3,984, to be exact. Consequently, direct geo-reference via using GPS/IMU provides sufficient accuracy to produce large scale map products. Moreover, other valuable benefits obtained are as follows: shorten mapping process, reduce field survey expense, and extend mapping coverage in both vast and inaccessible area.

REFERENCES

Federal Geographic Data Committee, Geospatial Positioning Accuracy Standards, FGDC-STD-007.3-1998.

Promtong, Chaiwat, et.al., Evaluation of horizontal accuracy of orthophoto covering survey test field, Geo-Informatics and Space Technology Development Agency conference year 2008.

Wolf, P.R. and Ghilani, C.D., Elementary Surveying : An Introduction to Geomatics, 2002, tenth edition, New Jerry : Pearson – Prentice Hall.

T