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ABSTRACT:The amphibious snail Oncomelania hupensis(O. hupensis) is the only intermediate host of 
Schistosomiasis japonica, which is a parasitic disease of considerable public health and economic significance. The 
survival of O. hupensis is governed by climatic and environmental factors, including vegetation, temperature, soil 
type and water level, etc. In this study, the environmental factors were derived from Landsat TM remote sensing 
image, and the relationship between environmental factors and the density of O. hupensis was analyzed by a multiple 
linear regression model. Although stepwise regression demonstrated that O. hupensis densities of live snails related 
significantly to the modified soil adjusted vegetation index (MSAVI), wetness index and land surface temperature 
(LST), the low correlation coefficient (0.3619) indicated that some important factors related to the abundance of snail 
had not yet been taken into account in the multiple linear regression model. Then, the great spatial analysis of the 
Geographic Information System (GIS) was used as a new tool to study the relationship between the distribution of O. 
hupensis and the surveillance of O. hupensis habitas. Spatial analysis of the regression residual was investigated by 
the semi-variogram method, and the spatial variation of O. hupensis density attributed to the spatial autocorrelation 
was estimated by ordinary kriging. Therefore, remote sensing and spatial analysis were both employed to predict the 
distribution of O. hupensis. Following this approach, O. hupensis in Dongting Lake region, China was predicted and 
the prediction results are validated with field data. The prediction results indeed improved considerably.  
 
1. INTRODUCTION  
 
Schistosomiasis japonica is one of many zoonotic parasitic diseases in the south of China. The central Government 
has, however, noted the serious situation and the national disease control programme has recently instituted a 
high-priority approach with regard to the major, communicable diseases in the area, in the particular schistosomiasis, 
HIV/AIDS, tuberculosis(Jiang, Wang et al. 2002; Chen, Wang et al. 2005; Li, Zhao et al. 2005; Utzinger, Zhou et al. 
2005). In spite of great efforts and the remarkable progress made over the past 50 years since the inception of the 
national programme on schistosomiasis control, hyper-endemic areas still remain in lake and marshland regions, as 
well as in some of the mountainous regions in seven provinces of southern China, especially, in the lake and 
marshland regions, for example, Dongting Lake(Yuan, Jiang et al. 2002; Zhou, Wang et al. 2005). Therefore, it is 
necessary to predict the distribution of S. japonicum for sustained control of schistosomiasis, under the current 
situation. 
The amphibious snail Oncomelania hupensis is the only intermediate host of Schistosoma japonicum, and its spatial 
distribution corresponds strongly with that of S. japonica in China(Zhang, Ong et al. 2008; Zhao 1994). This is 
obviously so because the survival of O. hupensis is governed by climatic and environmental factors, including 
vegetation, temperature, soil type and water level. The slightest variation of one factor or another can alter the 
distribution of the intermediate host snail, and hence the transmission dynamics of S. japonicum. Therefore, the 
relationship between environmental factors and the abundance of O. hupensis can be used not only for prediction of 
snail distribution, but also for mapping its endemic areas. 
The use of remote sensing environmental data derived from satellite images to determine vector-borne diseases is 
widely documented. Several successful applications have been reported in the literature with an emphasis on 
schistosomiasis in different ecological and epidemiological settings (Hay, Packer et al. 1997; Kristensen, Malone et al. 
2001). Remote sensing is an excellent tool for the collection of data, which facilitate the quantification of 
environmental factors that are a key way to understand the distribution of the intermediate host snail of 
schistosomiasis. 
This study presented a method to predict the underlying geographic distribution and density of the intermediate host 
snail of S. japonicum in Dongting Lake based on remotely sensed environmental data, and using spatial analysis as a 
tool to improve the prediction accuracy. 
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2. MATERIALS AND METHODOLOGY  
2.1Study areas and field survey data  
 
Dongting Lake is located at 28°30′~30°20′ N and 111°40′~113°40′ E in the northeastern part of Hunan Province and 
covers a water surface area of 2,681 km2. Archaeological studies have shown that schistosomiasis japonica has been 
endemic in the Dongting Lake region for thousands of years. Nearly 20% buffaloes were infected, and about 200,000 
human cases were reported in 2003(Zhao, Zhao et al. 2005). 
Field survey data on snail abundance of 2009 had been obtained previously from National Institute of Parasitic 
Diseases, Chinese Center for Disease Control and Prevention. 

 
2.2Environmental parameters extraction method from satellite image  
 
Landsat 5 TM scene over Dongtiang Lake, taken on 15 April 2009, was used for the current analysis. Environmental 
parameters were extracted from the image by using the ENVI Version 4.3 (ITT Visual Information Solutions, USA), 
three indices were calculated. First, the modified soil-adjusted vegetation index (MSAVI). The general expression of 
MSAVI is given below: 
 

 
22 +1- (2 +1) -8( - )NIR NIR NIR Red

MSAVI = 2

 
  
   (1) 

 
where NIR(near infrared) and Red refer to bands 4 and 3 of the TM image, respectively(Qi, Chehbouni et al. 1994). 
Second, the land surface temperature (LST). Remote sensing of the land surface temperature from space can be 
carried out using a specific portion of the electromagnetic spectrum such as band 6 of the TM scene. We used a 
formula to calculate the temperature from TM band 6, as follows: 
 

 TM6T =1260.53/ln[1+60.776/(0.1238+0.00563256DN )]   (2) 
 

where T is at-satellite temperature measured in degrees Celsius, DNTM6 is the Digital Number value of the band 6, 
then by using a mono-window algorithm to retrieve land surface temperature(Qin Z 2001). 
Third, wetness index, an index of environmental factor from the tasseled-cap transformed TM scene. There are three 
main features from the tasseled-cap transformation, i.e. brightness, greenness and wetness index. Brightness was 
designated to capture the main trend of variation in soil reflectance of barren land, the greenness was used as a proxy 
for the presence and density of vegetation, and the wetness index provided a measure of canopy and soil moisture 
content. Here we only selected the wetness index that can be explained: the content reported by the other two indices, 
i.e. brightness and greenness, have been captured by LST and MSAVI that have both been extracted from the satellite 
image and have also been used in the model (Guo, Vounatsou et al. 2005). Then tasseled-cap transformations were 
used to extract relevant variables related to environmental factors, since it is a linear combination of the original 
sensor bands to interpret the multi-spectral satellite image, the transformation formula of wetness index for TM scene 
is defined as (Price, Guo et al. 2002): 
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where TM1 to TM7 refer to the radiance of Landsat 5 TM image.  

2.3Spatial analyses 

According to the theory of Geostatistics(Wang 1999), the random variable (Z) can be decomposed into a constant 
mean (μ) for the data, the random errors (ε) and the error for the spatial dependence( ′ε ), which can be presented as Z 
=μ+ ε + ′ε . Both multiple linear regression model and spatial analysis methods were used for model development to 
predict the cluster distribution of snails.  
In the first stage, an ordinary multiple linear regression model analysis was performed to determine the relationship 
between snail abundance and the environmental indices extracted from the Landsat 5 TM image. In the regression 
analysis, the square-root transformed snail density in the habitats was used as the dependent variable and 
environmental indices from the satellite (MSAVI, LST and wetness index) as independent variables. 
In the second stage, spatial correlation analysis was performed by the semivariogram model, which provides a 
measure of the variance as a function of distance between data points. Based on the semi-variogram model of 
regression residuals, the spatial autocorrelation was estimated and mapping using ording Kriging. The semivariance is 
calculated image as independent variables. As half of the mean-squared difference between two values separated by 
the distance h: 
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where Z is a value at a particular location, N(h) the number of paired data at the distance h, and γ(h) is the 
semivariance. Denoting the spatial correlation parts of Z, it equals the expected squared difference value of observed 
points based on the fixed distance h. Semivariogram, a graph of semivariance plotted against separation distance h, 
conveys information about the continuity and spatial variability of the process. If observations close together are more 
alike than those farther apart, the semivariance increases as the separation distance increases, reflecting the decline of 
spatial autocorrelation with distance. Often, the semivariance will level off to nearly a constant value (called the sill) 
at a large separation distance (called the range). Beyond this distance, observations are spatially uncorrelated, 
reflected by a (near) constant variance in paired differences. We used the spatial analyst module of ArcGIS 9.0 and 
selected the exponential model instead of the spherical model to fit the spatial correlation of O. hupensis. Since the 
semivariance in our study did not really level off to a constant value, but increased very slowly beyond the range of 
distance, the formula is as follows:  
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where C0 is the nugget effect and Ce is the partial sill (so C0+ Ce is the sill). Although ea  is called the range, the 
“effective range” is 3 ea  since the semivariance γ(h) approaches the sill (C0+ Ce) asymptotically, i.e. the minimum 
distance at which spatial autocorrelation becomes less than 0.05 is 3 ea . 
Finally, the regression model of the snail abundance and the kriged prediction of its spatial variation were used to 
develop the prediction model of O. hupensis distribution in the Dongting Lake region. The final prediction model is of 
the follows: Y = a + bx1 +bx2 +bx3 + kriged residual, where Y is the square root transformed snail density, and x1, x2 
and x3 stand for LST, MSAVI and wetness index, respectively. 

 
3. RESULTS 

 
3.1Environment parameters derived from Landsat 5 TM image 
 
By using above materials and methodology, the environment indices (MSAVI, LST, and Wetness index) were 
derived from Landsat 5 TM image as Figure 1. 
The multiple linear regression model analysis was performed to determine the relationship between square-root 
transformed snail density (dependent variable) and parameters including LST, MSAVI and wetness index 
(independent variables).The model can be presented as follows: 
 

 Y =6.2794 -0.01403x1+0.8985x2 -0.03486x3 +γ(h)                                             (6) 
 

Where Y refers to the square root transformed snail density, γ(h) is regression residual，and the correlation coefficient 
of the model is 0.3619, and hence the model only explained 36.19% of the total variation of snail abundance in our 
study area. 

 
3.2Spatial analysis of the regression residual and prediction model for distribution of O. hupensis 
 
The semi-variogram for the regression residual was an exponential model with a sill value of 0.09966, the nugget 
value 0.04282, and the range was 46.9235 m .The formulation of the residual is as equation (7). 
Based on the semi-variogram model of regression residuals, the spatial variation of O. hupensis abundance attributed 
to the spatial autocorrelation was estimated and mapped using ordinary kriging (Figure 2). 
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(a) MSAVI (b) LST (k) (c) Wetness index 

Figure 1. Environment indices (MSAVI, LST, and Wetness index) derived from Landsat 5 TM image  

 

Figure 2. Prediction map of regression residuals using ordinary kriging 

Finally, through combine a multiple linear regression with kriged residual model, the prediction results are validated 
with field data, and the model of living snail density can get a high correlation coefficient as 0.835. Figure 3 (a) shows 
the prediction map of O. hupensis distribution density in Dongting Lake, China. Although the correlation coefficient 
is higher than just only using linear regression, we still can find that there is some mistake in the prediction map. For 
example, water areas of lake should not have snails. Possible explanation is that this method is invalid since some 
special situation due to it just for considerate the relationship with snails living environment, and hence ignoring some 
restrictive conditions. It can get a good result at the snail living region, but unlikely include all factors.  Because snail 
is hard to survive at no vegetation areas, we use the MASVI to extract the no vegetation areas, then the final prediction 
map is as Figure 3 (b).  

  
 (a) Prediction map of not extract no vegetation areas  (b) Prediction map of extract no vegetation areas 

Figure 3. Prediction map of O. hupensis distribution densities in Dongting Lake 

4. DISCUSSION AND CONCLUSION  
 

This study extracted several environmental features from an available Landsat 5 TM satellite image for identification 
and prediction of O. hupensis habitats. We used MSAVI, LST and wetness index to carry out multiple linear 
regression analysis as these variables with the highest predictive power for mapping snail abundance. In the current 



study, the MSAVI was used to estimate ground vegetation with its normally positive correlation with the soil 
background brightness and minimize soil background influences on the vegetation signal. Wetness index provided a 
measure of canopy and soil moisture content. Linear regression by environmental factors alone was not sufficient to 
accurately predict snail abundance as the correlation coefficient of the linear regression model is only 0.3619. Large 
regression residual indicated that some important factors related to the abundance of snails had not yet been taken into 
account in the model(Zhang, Xu et al. 2005). In order to overcome this potential biases, we used the semi-variogram 
technique to investigate the spatial dimension of the regression residuals and estimated the variation of snail spatial 
distribution in ordinary kriging method. A substantial improvement was shown in the prediction model, which 
combined the regression model and the kriged-residual model. The prediction results are validated with field data,and 
the correlation coefficient was as high as 0.835.  From the results analysis, we also found that this method can capture 
the relationship between O. hupensis distribution density and environmental factor, such as vegetation, temperature, 
spatial distribution etc, but at some special, for example water area, it performed not well. This method ignored some 
restriction conditions of O. hupensis survivability, so we should study the limited condition of relative environment 
factors, and try to use the limited factors to modify the results, like MSAVI in this study.    
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