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Abstract: Geothermal energy is directly related to radioactive elements inside of the earth. In geothermal areas 
thermal gradient is higher than vicinity regions. Extraction of thermal energy is therefore more beneficial in 
these areas. The Sabalan, Damavand, Sahand, Taftan, and Bazman regions have been proved as good potentials 
for geothermal energy in Iran. This study aims assessment of capability of remote sensing technology for 
detection of geothermal resources in Sabalan geothermal area. To do this task, processing of two datasets of 
Advanced Spaceborn Thermal Emission and Reflection radiometer (ASTER) data were used for alteration 
detection. Two ASTER scenes from the study area were therefore merged and processed. The applied method 
for mineral detection in this research is linear spectral unmixing. The important alterations (carbonate, borate, 
iron oxides, and clay minerals) were successfully detected and mapped. Besides that, the thermal anomalies 
were also investigated and mapped with the use of ASTER thermal channels. The resultant maps were then 
validated with comparing to the results of geophysical surveys available from SUNA organization. According to 
their works, the anomaly maps resulted from ASTAR data processing are able to illuminate the geothermal 
potential in the study area.  

 
INTRODUCTION

Geothermal energy originates from collapsing of existing radioactive elements inside of the earth. In geothermal 
areas this source of heat energy, in the form of magma, is closer to the surface than other places. This kind of 
energy is one of the clean energy types and could be used directly for electricity generating. Detection of 
geothermal resources, therefore, has been much of interest for earth scientists. Considering the alteration caused 
by magma and hydrothermal fluids in surrounding rocks particularly around faults and fractures, a diversity of 
geochemical methods have been applied to geothermal resources explorations. Sinters, the chemical precipitates 
of hydrothermal systems, generally consist of mineral dominated by silica, carbonate, borates, metallic sulfides 
and oxides, and clay minerals (Hellman etal. 2004, Coolbaugh etal. 2006, Kratt etal. 2006). Therefore, areas that 
show anomalies of above mentioned minerals will be good targets for planning more detail exploration. 
Detection of such regions can be easily done by processing of remote sensing data. Exploration of Geothermal 
energy with remote sensing technology is useful in the early stages of exploration (Fernández etal. 2001). For a 
long time, geological remote sensing researchers have focused on the use of spectral signatures for rock type 
discrimination and mineral mapping, especially hydrothermal alteration minerals (Rowan etal. 2003). The use of 
remote sensing data analysis for geothermal exploration has been investigated in previous researches (e.g 
Coolbaugh etal. 2006,2007, Kratt etal. 2006,2009,2010, Eneva etal. 2007,2009). 

 Recent developments in processing of both multi and hyperspectral data have led to the extensive 
application of those data in mineral detection. ASTER is one of the spaceborn multispectral satellite imagery 
systems that have been used for mineral exploration and it has better spectral resolution both in SWIR and 
thermal regions comparing to LANDSAT imagery (Azizi etal. 2010). As a result, on the basis of spectral 
characteristics of minerals, different alteration minerals are detected and mapped using ASTER data (Tangestani 
etal. 2008). Because of vicinity of geothermal systems to land surface, detection of geothermal related thermal 
anomalies could be another technique for underground geothermal systems exploration and thermal channels of 
ASTER data are also applied for surface temperature assessments and analysis. 

In this study, surface indicators (alteration minerals and thermal anomalies) of geothermal resources in 
Sabalan Mountain were detected. To do this task, the clay minerals, silica, borates, carbonates, and iron oxides 
were selected as indicator. Spectral image processing techniques including endmembers detection and unmixing 
algorithm were performed on the ASTER data. Finally we processed thermal bands of ASTER for extraction of 
geothermal related surface thermal anomalies. 
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DATA ACQUISITION AND PREPROCESSING 

In this study two georeferenced scenes of ASTER level 1B data were merged to achieve necessary coverage of 
the region. In figure 1 time of acquisition and position of data is illustrated. The data was then atmospherically 
and topographically corrected using FLAASH and Lambertian (Riaño etal. 2003) method respectively before 
running the unmixing and thermal procedures. 

 

 

 Figure 1: position and time of acquisition 
the ASTER data. 

LINEAR SPECTRAL UNMIXING ALGORITHM (LSU) 

In this study geothermal related minerals were detected using unmixing algorithm. In LSU algorithm, as 
indicated in equation 1, an unknown pixel usually consisted of different materials and the total reflection of a 
pixel is considered as a linear mixings of reflections of the materials (Chang. 2007, Borengasser etal. 2008) 
where X is pixel spectrum,  is coefficient of ith reference spectrum (endmember),  is ith reference spectrum, 
and  is noise. Unmixing algorithm determines contribution of different materials in all pixels of data with 
decomposition of their spectrums. Before implementation of Unmixing algorithm four steps needs to be done 
including: 1) minimum noise fraction (MNF), 2) pixel purity index (PPI), 3) n-dimensional visualization (n-
DV), 4) spectral analysis. 

 
 (1) 

 
MINIMUM NOISE FRACTION (MNF) 

 
MNF is statistical method similar to PCA (Azizi etal. 2010) that separates noise from data and gives estimation 
about actual dimensionality of data and reduces latter computations. After preprocessing, the MNF algorithm 
was implemented for noise whitening and preparing the data for Pixel Purity Index (PPI). In the MNF derived 
image there is no correlation among bands and its first band reflects main part of information, as indicated in the 
figure 2 due to its higher eigenvalue comparing to following bands (figure 3). 

 
 



 
 

Figure 2: MNF image of the study area. (a) band. 1 and (b) band. 2.   
 

 
 Figure 3: Eigenvalues of MNF image bands 1 to 9 

PIXEL PURITY INDEX (PPI) 

Recently many algorithms were developed for extraction of pure pixels of remote sensing multi and 
hyperspectral data and PPI is one of efficient algorithms for this task. PPI is the method that determines relative 
purity of pixels using the convex geometry argument (Qiu etal. 2006). In the PPI algorithm n random unit 
vectors are generated in m-dimensional data space (m is the number of MNF image bands in this case) and all 
pixels are projected to these random vectors. After predefined iterations, pixels that their projections fall far 
from mean projection by a certain threshold are marked as pure pixels. PPI algorithm was therefore 
implemented over MNF image for detection of purest pixels. Most of the pure pixels of the study area are in the 
western and eastern parts as indicated in figure 4.

N-DIMENSIONAL VISUALIZATION 

In the PPI algorithm pixels are evaluated in terms of purity and characteristics of pure pixels are not recognized. 
They were plotted in an n-dimensional space for grouping of pure pixels. This is done by ENVI�s N-
Dimensional Visulizer and 5 classes were detected by visual interpretation (Figure 5). For determination of 
mineralogy of detected classes the mean spectrum of each of them were calculated.  

 
 
 
 
 



 
 

Figure 4: Pure pixels of the 
study area (red pixels). 

 
 

Figure 5: clouds of pure pixels in 3D view and 5 distinguished classes. 

 
SPECTRAL ANALYSIS 

Spectral analysis is used to identify different mineral types based on their spectral features (Qiu etal. 2006). The 
spectral analysis was applied for determination of mean spectrums (endmembers) using Spectral Angle Mapper 
(SAM), Spectral Feature Fitting (SFF), and Binary Encoding (BE) algorithms and USGS mineral spectral 
library as references spectra. To do this task, the reference library was resampled according to ASTER channels 
(figure 6). Finally the minerals of the spectral library having higher matching score to the endmembers based on 
the total scores of the three comparison methods were selected. The matching of absorption features on the 
reference and endmembers spectral profile were then visually checked to select best matches to the 
endmembers. The minerals Calcite, Montmorillonite, Tincalconite, Silica, and Hematite were therefore detected 
as representatives of 5 classes (table 1, figure 7). 

Table 1: assigned minerals to the detected classes.   
Class No Mineral type SAM SFF BE

Class1 Calcite 0.902 0.704 0.778 
Class2 Montmorillonite 0.865 0.843 0.889 
Class3 Tincalconite 0.929 0.692 0.889 
Class4 Quartz 0.814 0.763 0.778 
Class5 Hematite 0.888 0.990 0.889 

 

 
 Figure 6: resampled montmorillonite and its 

original spectral profile.   
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Figure 7: absorption features of the mean spectrum of 5 classes (red lines) and their best fit from library (black 
lines). (a) montmorillonite (b) calcite (c) tincalconite (d) quartz (e) hematite.

After detection of endmembers, LSU algorithm was applied for computing of the abundances of detected 
minerals. The results were then integrated by rule classifier algorithm to achieve minerals distribution map. 
Each pixel was therefore assigned to one of the detected endmembers if its contribution in that pixel had been 
more than predefined thresholds. The abundance map of detected minerals was illustrated in figure 8.  

 
 

 

 

 

 

 

 

 

 
Figure 8: abundance map of detected minerals image  



THERMAL ANOMALY EXTRACTION 
Detection of thermal anomalies is really helpful for geothermal exploration since it directly reflects the presence 
of thermal sources. For achieving a temperature anomaly map of the study area we applied the 13 th band of 
ASTER data for extraction of Brightness Temperature (BT) explained by (Zhang etal. 2008).  Extraction of BT 
image from radiance based images such as ASTER 13th band was done by equation (2) where  is BT (ok), 
c1=1.191×108w/(m2×sr× m), c2=1.439×104 m×k, and c is the wavelength in m. As indicated in figure 9, the 
BT image was obscure because of the high variation in the area elevation.  

 (2) 

 

 Figure 9: BT image of 13th band of ASTER data. 

If other effective parameters are constant, land surface temperature (LST) decreases by increasing of area 
elevation with rate of �6.5oC/km (Eneva etal. 2009). Inverse relationship between elevation and LST in the 
study area is indicated in figure 10. To improve the temperature map, we performed the elevation effect 
correction with the use of Digital Elevation Model (DEM) of the region (figure 10a) and equation (3) where  
is BT of each pixel after elevation correction and  is elevation (m). In the corrected map the north-western 
part of the Sabalan MT, containing youngest intrusive of the study area and hot springs, shows an obvious 
thermal anomaly (figure 11) and the highest thermal anomalies (red pixels) are closed to hot springs. 

 
 (3) 

Figure 10: (a) Digital elevation model. (b) ASTER band 13 
image. There is inverse relationship between temperature and 
elevation. 



ESULTS AND DI

Prior to this study, a geothermal exploration project had been accomplished by SUNA organization in the Movil 
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area in north western of the Sabalan Mountains using field studies (geochemical and geophysical methods) 
(Eshaghpour. 2005, Talebi etal. 2005, Noorollahi etal. 2003, Bogie etal. 2005). In this research hydrothermal 
alteration related minerals including iron oxides, silica, clay, carbonate, and borate were detected in the SUNA 
study area, northwestern of Sabalan MT and there is a high conformity between the results of this study and the 
proposed area by SUNA. Therefore, other anomalies detected in this research (southern of Ardabil and other 
promising areas marked on the map (Figure 11)) can be considered as promising targets for detail field studies. 
The chemical analysis of hot springs of Sabalan region indicates significant amounts of dissolved Boron and 
Carbonate in some of their composition such as Ghaynarjeh and we detected these minerals near the hot springs 
with the use of unmixing algorithm (Figure 8). This is another evidence for reliability of the applied method. BT 
image indicates an extensive thermal anomaly in the north western part of Sabalan MT where wide 
hydrothermal alteration exists. However an extensive alteration, has been detected in the western part of study 
area, southern of Ardabil city, is not associated with high temperatures in corresponding thermal image, this area 
is promising for detail field studies because often  large aquifers conceal thermal anomalies in the surface 
(Ardabil Plane Aquifer in this area). 
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