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Abstract:  
This paper develops a novel approach that embeds minimum noise fraction (or noise-adjusted principal component 
analysis) in canonical analysis (called noise-adjusted canonical analysis, NACA). The objective is to take the 
discriminability of targets and quality of image into account simultaneously when extracting features from 
hyperspectral image data sets. Experimental results indicate that the NACA algorithm for classification task can 
produce better results than principal component analysis, conventional canonical analysis and minimum noise 
fraction from an airborne and an EO-1 Hyperion image data. 
 
 
1. INTRODUCTION  
 
Remote sensing techniques and materials have become popular in various applications, e.g. disaster monitoring (e.g. 
Sakar & Kanungo, 2004; Metternicht et al., 2005; Nichol & Wong, 2005), landuse investigation (e.g. Pacifici et al, 
2009; Rozenstein & Karnieli, 2011) and environmental evaluation (e.g. Liu et al., 2002; Yang et al., 2010). For 
general land-cover, land-use classification tasks, multispectral images may provide adequate information to 
distinguish ground targets of interest. However, it may be difficult to achieve detail target detection or classification 
with the discrete and limited spectral information of multispectral images. Hyperspectral data, on the other hand, 
can supply rich spectral information for more advanced and sophisticated classifications. Nevertheless, the vast 
channels of hyperspectral data sets may pose a great challenge in hyperspectral image analysis. Therefore, band 
selection and feature extraction to reduce dimensions is often an practical necessity for effective hyperspectral 
image analysis and applications.. 
 
Principal component analysis (PCA) is a popular transformation to mitigate the drawbacks of high-dimensionality, 
e.g. Hughes phenomenon (Hughes, 1968) and redundancy. The criterion of PCA is based on maximum covariance. 
However, this type of band- or global-based computation may not provide helpful and detailed discriminability 
between different surfaces (Cheriyadat & Bruce, 2003; Goldberge et al., 2007). Furthermore, it does not consider 
image quality (Chang & Du, 1999). On the other hand, canonical analysis (CA) is similar to PCA but the 
covariance is calculated according to within and among classes. It can provide the distinction of class-pair for better 
target recognition. Nevertheless, it does not take the quality of image into account when computing the class 
separability. Consequently, the results may not be good enough for classification. Minimum noise fraction (MNF) 
or noise-adjusted principal component analysis (NAPCA) is another transformation which depends on signal to 
noise ratio (SNR). The results of MNF can reflect image quality. Hence, this paper develops a novel approach for 
feature extraction that embeds the MNF concept in CA (called noise-adjusted canonical analysis, NACA) to take 
the discriminability of targets and image quality into account at the same time for effective feature extraction of 
hyperspectral images. 
 
 
2. PROPOSED METHOD 
 
There are two steps in NACA in order to consider image quality and classes’ separability simultaneously. First, the 
MNF algorithm is performed to reduce noise by band selection. Consequently, applying CA operator to previous 
results enhances discriminability between different classes. For the band selection, this study finds the convergence 
band from MNF egienvalue diagram (see Figure 1, the convergence is band 6 in this case). Then the first principal 
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band to convergence band (which are assumed signal only) is inputted in the CA approach. Finally, the front bands 
of CA results indicate the extracted information have good image quality and separability.  
 
The concept of MNF is to calculate covariance of the entire image and noise and produce SNR by the whiten 
technique (Eq. (1)). Then PCA is performed to obtain eigenvalues and eigenvectors (Eq. (2)) as discussed in Chang 
& Du (1999). On the other hand, CA computes the covariances of within (Eq. (3)) and among classes (Eq. (4)), and 
then solves the eigenvalues and eigenvectors. 
 
Table 1 shows the methods comparison between PCA, CA, MNF and NACA algorithms, where V and λ are the 
eigenvector and eigenvalue matrix; Σ indicates the covariance matrix of the image; ΣAmong and ΣWithin represent the 
covariance matrix of among and within classes; ΣNoise marks the covariance matrix of noise. It is obvious that 
NACA combines SNR, PCA (MNF) and CA concepts to extract useful and quality information. 
 

 (1) 

  (2) 
 
where  
F: noise-whitening matrix 
E: a transform 

n∆ : diagonal eigenvalue matrix of the noise 
covariance 
H: MNF result 
G: eigenvector matrix from a PCA based on noise-
adjusted data covariance 

 (3) 

 (4) 

 
where 

WithinΣ : covariance matrix of within class 
M: number of classes 

iΣ : covariance matrix of the data in class i 

AmongΣ : covariance matrix of among class 
im : mean of ith class 
0m : global mean 

 

 

Figure 1: MNF band selection by eigenvalue diagram (only shows top 10; the convergence is band 6) 

 
Table 1: Methods comparison 

Methods Criterion Tool Reference 
PCA [V, λ]= Eig (Σ) ENVI (Richards, 1999) 
CA [V, λ]= Eig (ΣAmong, ΣWithin) Matlab - 

MNF [V, λ]= Eig (ΣNoise/ Σ) è PCA ENVI (Green et al., 1988) 

NACA MNF è CA ENVI+Matlab - 
 
 



3. DATA & RESULTS 
 
Two hyperspectral image cubes (Intelligent Spectral Imaging System, ISIS, and EO-1 Hyperion, see Figure 2) were 
used to test the developed algorithms. The properties of the datasets are displayed in Table 2. Because some bands 
in the two datasets are nosier, null information, low SNR or redundancy, some of the spectral bands were excluded 
from the analysis. As a result, there are 160 (522.8- 902.7 nm) and 95 (426.82- 2395.5 nm) bands remained for ISIS 
and Hyperion cases (Tsai et al., 2007a; Tsai et al., 2007b). The number of pixels of training and check data are 
shown in Table 3. 
 
Because the goal of PCA, CA, MNF and NACA is to extract and sort useful information. These first and second 
principal bands are very important. The images are classified into different classes (as listed in Table 3) based on 
the extracted principal bands and using maximum likelihood classifier (threshold is 0.95). The evaluations of the 
classifications, including the PA (Producer Accuracy), UA (User Accuracy), OA (Overall Accuracy) and kappa 
coefficient, are discussed in the subsequent sections for both the ISIS and Hyperion cases. 
 

 

ISIS (R: 663.8 nm, G: 561.0 nm, B: 501.3 nm)  

 

Hyperion (R: 660.85 nm, G: 559.09 nm, B: 487.87 nm)  

Figure 2: Test images and ground truth 

 

Table 2: Image properties 

Data source ISIS (used) Hyperion (used) 
Location Xi-Tou, Taiwan Heng-Chun, Taiwan 

Date September, 2006 January, 2004 
Platform Airborne Spaceborne (EO-1) 

Image size (pixels) 1200×400 481×256 
Spatial resolution (m) 1.5 30 

Spectral resolution (nm) 3.5- 5 10 



Spectral range (nm) 430- 945 (522.8- 902.7)  355- 2577 (426.82- 2395.5) 
Number of band 218 (160) 242 (95) 

 
Table 3: Number of pixels of training and check data (the words’ color correspond with Figure 1) 

ISIS Building Road Land Grass Farmland Coniferous 
Forest 

Bamboo 

Training 2015 1456 571 2746 2087 3369 2453 

Check 182 274 82 223 119 439 342 

Hyperion Building Water Land Grass Taiwan 
Acacia 

Negundo 
Chastetree 

Leucaena 
Leucocephala 

Training 60 70 75 70 193 111 139 

Check 30 39 46 39 115 64 90 

 
 
3.1. ISIS Case 
 
Figure 3 shows the MNF eigenvalue diagram. It is clear that the convergence is band 7. Therefore, the first to the 
seventh bands are inputted in CA algorithm. Figure 4 displays the top 2 principal component of PCA, CA, MNF 
and NACA. For the classification comparison, the PA, UA, OA and kappa evaluations are shown in Table 4. It 
appears that CA and NACA produce better results than PCA and MNF. In addition, there are many pixels of PCA 
whose probability after MLC classification is less than 0.95. Those were identified as the unclassified pixels and 
resulted in very poor classification results. In general, the discriminability-based strategy produced better results 
than MNF mechanism in this case. 
 

 
Figure 3: The MNF eigenvalue diagram in ISIS case (only show top 10, the convergence is band 7) 
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Figure 4: First and second principal images in ISIS case 
 

Table 4: Classification results in ISIS case 
Classes  PCA CA MNF NACA 

Building PA (%) 0 80.22 81.32 64.84 
UA (%) 0 85.88 96.1 85.51 

Road PA (%) 0 70.85 50.22 62.33 
UA (%) 0 59.18 56.85 58.4 

Land PA (%) 0 74.09 63.14 73.72 
UA (%) 0 73.82 86.93 68.71 

Grass PA (%) 0 68.29 80.49 79.27 
UA (%) 0 80 35.87 61.32 



Farmland PA (%) 0 63.87 84.03 73.95 
UA (%) 0 55.07 75.76 83.02 

Coniferous 
Forest 

PA (%) 28.7 78.36 70.84 80.87 
UA (%) 96.92 82.49 73.35 82.75 

Bamboo PA (%) 35.67 65.5 59.06 69.3 
UA (%) 73.49 69.14 54.45 67.71 

OA (%) 14.93 72.67 66.95 72.49 
Kappa 0.1127 0.6688 0.6016 0.6657 

 
 
3.2. Hyperion Case 
 
Similar test was also performed on the Hyperion image cube. In this test, top 6 of MNF bands were used to perform 
CA operator as displayed Figure 5. Figure 6 listed the first and second principal components of feature extraction 
by the four approaches. A quick visual comparison of the four transformations in this case indicates that NACA 
images provide better quality than CA and discriminability than PCA and MNF. To further evaluate the 
classification, the best results were generated from NACA. Comparing Figure 4 and Figure 6, it is noticed that the 
quality of Hyperion image is worse than ISIS dataset. However, NACA still produced the best classification results 
among the four methods of feature extraction. It further proves that NACA considers image quality and separability 
of targets simultaneously and can better extract truly discriminant features from the data sets. 
 

 
Figure 5: The MNF eigenvalue diagram in Hyperion case (only show top 10, the convergence is band 6) 
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Figure 6: First and second principal images in Hyperion case 
 

Table 5: Classification results in Hyperion case 
Classes  PCA CA MNF NACA 

Building PA (%) 0 100 53.33 100 
UA (%) 0 100 48.48 100 

Water PA (%) 94.74 100 94.74 100 
UA (%) 100 100 90 100 

Land PA (%) 0 58.97 74.36 76.92 
UA (%) 0 48.94 58 78.95 

Grass PA (%) 0 91.3 47.83 95.65 
UA (%) 0 71.19 64.71 88 

Taiwan 
Acacia 

PA (%) 70.43 53.04 67.83 80 
UA (%) 88.04 59.8 71.56 76.67 

Negundo 
Chastetree 

PA (%) 64.06 53.13 64.06 81.25 
UA (%) 66.13 45.33 48.81 54.17 

Leucaena 
Leucocephala 

PA (%) 18.89 45.56 64.44 34.44 
UA (%) 62.96 57.75 80.56 62 

OA (%) 41.47 63.74 66.35 75.12 
Kappa 0.3475 0.5645 0.5942 0.6996 

 
 
4. CONCLUSIONS & FUTURE WORKS 
 
This study proposed a novel algorithm (noise-adjusted canonical analysis, NACA) to reduce dimensionality and 
extract useful features from hyperspectral images for classification. Two test cases demonstrated the NACA can 
preserve not only image quality but discriminability between targets. The results of all experiments are evaluated 
the PA, UA, OA and kappa measures. In all evaluations, NACA has better accuracy on both the ISIS and Hyperion 
image cubes.  
 
Currently, NACA is just a hierarchical strategy, i.e. performing MNF and then CA. Future work will integrate noise 
estimation and CA together to generate a more coherent, efficient and systematic algorithm. 
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