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Abstract: Forest biomass is a crucial parameter in global change and carbon trade. The IPCC reports defined the 
shrub carbon storage as a part of carbon inventory, but few researches discussed the carbon stock of shrub 
vegetation. Here we proposed an empirical machine learning model to estimate the shrub aboveground live 
biomass. The approaches mapping AGB from satellite observations were divided into directly and indirectly ways. 
Indirectly biomass mapping from parameters like cover, vegetation index was widely used, but the parameter itself 
and the two step modeling increased the uncertainty and reduced the accuracy. Here, we discusses the directly 
method based on reflectance and ancillary data. On the basis of Landsat TM images, a regression tree-based model 
(Random Forest) was built to simulate the AGB. The Landsat images acquired in 30th, June, 2009 were firstly 
re-projected, geographically and radiometric corrected. Water bodies, clouds and their shadows were identified and 
masked. Field data was measured from the 39 field plots in 2009 and 2011, which was used in modeling and 
validation. Ancillary data includes the topographic data. The empirical, non-parametric model Random Forest was 
successfully applied for forest biomass estimation, which captures non-linear relationship between satellite data and 
biomass density. Our model had a good performance with the explained variance 75.46%, RMSE 1.55 Mg ha-1. In 
this study, we demonstrate that Landsat data provide the capability to produce accurate and detailed estimation of 
biomass distribution in Mu Us sandy land. Adding ancillary data could improve shrub biomass prediction.  
 
INTRODUCTION 
 
Forest biomass is a crucial indicator in carbon sequestration capacity and forest carbon budget evaluation (Dixon, 
Brown et al. 1994; Fang, Chen et al. 2001; Dong, Kaufmann et al. 2003).  The IPCC reports defined the shrub 
carbon storage as a part of carbon inventory, but few researches discussed the carbon stock of shrub vegetation.  
Attention has been paid recently to the reforestation possibility of sandland , and the role of shrub-dominant 
sandlands in the carbon budget (Xu, Cao et al. 2010), where research shows sandy desertified land rehabilitation 
improves soil carbon sequestration (Su, Wang et al. 2010). In addition, sandland, as the fragile ecosystem with poor 
resilience, paves the way for a switch to catastrophic shifts in climate, nutrient loading, habitat fragmentation or 
biotic exploitation (Scheffer, Carpenter et al. 2001; Gao, Hu et al. 2002). Remote sensing from space is the only 
feasible method for mapping and monitoring the extent and density of woody shrub canopy parameters over these 
remote and inaccessible tracts of land(Chopping, Moisen et al. 2008). Canopy structure parameters can be extracted 
directly from high resolution images such as IKONOS, Geoeye-1, et al. These data sources have high measuring 
precision but have limitations such as costliness, coverage limitation, and are time consuming in image processing. 
Also without an NIR band, they are relatively less useful in applications (Chen, Gu et al. 2009; Gonzalez, Asner et 
al. 2010). Low resolution images have great advantages in large-scale applications, although their accuracy is 
relatively low. Chopping et.al explored the vegetation parameter retrieval by adding angle information (Chopping, 



Nolin et al. 2009). Middle resolution images are the most widely used data source as they balance the observing 
range, resolution and cost(Poulos 2009; Gasparri, Parmuchi et al. 2010; Soenen, Peddle et al. 2010) . 
 
The approaches mapping AGB from satellite observations were divided into directly and indirectly ways. Indirectly 
biomass mapping from parameters like cover, vegetation index was widely used, but the parameter itself and the 
two step modeling increased the uncertainty and reduced the accuracy. Especially in arid and semi-arid areas, low 
vegetation cover and the bright background of the dryland made the vegetation indices less effectiveness (Ni and Li 
2000; Chopping, Su et al. 2008). Several studies have discussed the capabilities and limitations of optical sensors 
for direct biomass estimation, demonstrating the sensitivity of visible and short wave infrared wavelengths to 
vegetation density and structure(Baccini, Friedl et al. 2004; Avitabile, Baccini et al. 2011). 
 
Breiman proposed random forests an effective tool in prediction, which change how the classication or regression 
trees are constructed. It performs very well compared to many other classiers, including discriminant analysis, 
support vector machines and neural networks, and is robust against overtting (Breiman 2001; Friedman, Hastie et 
al. 2001) . Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; 
(2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor 
variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, 
survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values(Cutler, Edwards Jr 
et al. 2007). 
 
Here we proposed an empirical machine learning model to estimate the shrub aboveground live biomass. Here, we 
discusses the directly method based on reflectance and ancillary data. On the basis of Landsat TM images, a 
regression tree-based model (Random Forest) was built to simulate the AGB, shown in Figure 1. 

 

Satellite data 

Re-projection 
Registration 

Radiometric correction 
Water clouds mask 

Topographic data Field data 

Calculate Slope and 
Aspect based on DEM 

Re-projection 
Resample 

 

Biomass calculation  
Digitalization 

Calibration  
Re-projection 

Sampling and standardization 

Correlation analysis and variables selection 

Biomass modeling based on Random Forest 

Biomass estimation model assessment and validation 

Results and discussion 

Figure 1: Flowchart of our study 



DATA AND METHODS 
Study area 
 
Our study area, Mu Us Sandland, is located in the junction of Ningxia, Inner Mongolia and Shanxi Province, China 
(Fig. 2) between the range of 37°27.5′ ~ 39°22.5′ N and 107°20′ ~ 110°30′ E. This region, between the Ordos 
Plateau and the Loess Plateau, has an extreme temperate continental climate with low rainfall, drought, wind, strong 
evaporation and abundant sunshine. The annual precipitation is 350 to 400mm, annual evaporation is about 
2592mm, annual average temperature is 6 °C, annual average wind speed is 3.4m/s, and the average number of 
days of above gale force 8 is about 24 days. The dominant vegetation is shrub, including tamarix, salix 
psammophila, hippophae rhamnoides, Pekin willow, caragana, scoparium, artemisia, hedysarum, salix cheilophila , 
etc. We selected the smaller study area north of Mu Us Sandland, which covered 36 measure fields shown in Figure 
2 in red rectangle. 

 
Figure 2: Study area of Mu Us sandland in China and field plots 

 

Field datas 
 

Field data from 39 field plots were collected during July 2009 and 2011. These plots contain main shrub species in 
the hinterland of Mu Us Sandland.  Plot size was set at least 0.09 ha (30m x 30m) to ensure that 30m image pixel 
would spatially coincide with each plot, because, based on individual pixels image, data was associated with field 
plots. The latitude and longitude were recorded by a high-accuracy global positioning system (GPS). These points 
were loaded and reprojected in ArcGIS Desktop ver9.3 software. Above Ground Biomass (AGB) validation data 
were calculated for each plot from field measurements, according to the different shapes of different species, plots 
were separated into two types: 1) grasslike shrubs; 2) arborlike shrubs.  

For the grasslike shrubs such as salix monogolica, artemisia arenaria, etc., shrubs were divided into three classes: 
big, middle and small clusters, according to the actual measurements of vertical canopy diameter and height for 
each shrub and for each grasslike shrub plot. Shrub heights and vertical canopy diameters were measured using a 
surveyor's rod accurate to 0.1 centimeter. A part of each cluster was harvested as a sample of AGB. Samples were 
weighed immediately after they were harvested, and then put into an oven for 72 hours at a temperature of 120 . 
Dried samples were weighed to calculate the proportion of dry matter for each plot. The AGB of each plot (Xu, Cao 
et al. 2010) is formulated as  

 (1) 
Where WB, WM and WS are dry weights of the big, middle and small cluster samples respectively and a, b and c are 
the counted numbers of corresponding clusters in the plot. 
 



For arborlike shrubs such as hankowwillow, AGB was calculated from diameter at breast height(dbh) and tree 
height. The dbh was derived from the perimeter measured at the 1.2m height and the tree height was measured 
directly from the surveyor's rod for each of the trees in the plot.  

 (2) 
Where D and H are the dbh and tree height respectively; a and b are regression parameters. 
 
Satellite data 
 
The Landsat TM 5 image was acquired 30th, June, 2009, which was geographically and atmospherically corrected. 
All the cloud and water part was masked artificially. Landsat TM 5 was launched March 1, 1984 by NASA. It has a 
Worldwide Reference System-2 (WRS-2) path/row system, Circular, sun-synchronous, near-polar orbit at an 
altitude of 705 km, with a repeat cycle of 16 days. This sensor has seven spectral bands descried in Table 1. 
 
Table 1 Spectral of Landsat TM 5 
 
Band Spectral range Wavelength (μm) Resolution(m) 
Band 1 Blue 0.45 ~ 0.52 30 
Band 2 Green 0.52 ~ 0.60 30 
Band 3 Red 0.63 ~ 0.69 30 
Band 4 Near-Infrared 0.76 ~ 0.90 30 
Band 5 Near-Infrared 1.55 ~ 1.75 30 
Band 6 Thermal 10.40 ~ 12.50 120 
Band 7 Mid-Infrared 2.08 ~ 2.35 30 
 
The DEM was derived from ASTER Global Digital Elevation Model (ASTER GDEM), a joint product developed 
by the Ministry of Economy, Trade, and Industry (METI) of Japan and the United States National Aeronautics and 
Space Administration (NASA) (http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html). It was generated 
from data collected from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 
covers the entire land surface of the Earth. The ASTER GDEM is in GeoTIFF format with geographic lat/long 
coordinates and a 1 arc-second (30 m) grid of elevation postings.  It is referenced to the WGS84/EGM96 geoid.   
 
All these spectral and topographic variables were projected to Albers equal area coordinate system, with the central 
meridian set as 105°E, two standard parallels set as 25°N and 47°N. As this paper only tested the model suitability 
in the small area, the images was clipped as the red retangle area in Figure 1.Then they were transferred into ASCII 
format.   
 
Modeling process 
 
Empirical, non-parametric models do not assume any a-priori statistical distribution of the input data nor any 
specic form in the relation (e.g.linear) between the predictors and there sponse variable. RandomForest, an 
extension of tree-based models, has been successfully applied for biomass estimation using remote sensing data in 
several different contexts (Baccini, Friedl et al. 2004; Avitabile, Baccini et al. 2012). This algorithm was 
implemented in the opensource software R (R Development Core Team 2011). The statistic regression model was 
produced and the variable importance was predicted(Liaw and Wiener 2002).  The percent of variance explained 
(R²) and Root Mean Squared Error (RMSE) were conducted to evaluate the regression performance. 
 
RESULTS 
 
We developed a non-parameter tree-based model Random forest to simulate biomass of the test area. The explained 
variance was 75.46%, which means the predicted value and the observation has relatively high correlation. The 
RMSE was 1.55 Mg ha-1, which means the error of OOB was not very low. Especially for this arid and semi-arid 
area, low rain fall along with the low biomass (most of them was lower than 10 Mg ha-1) made it more difficult to 
predict from spectral reflectance and presented slightly larger errors. 
 
The variable importance was computed as the average increase of node purity(i.e.residual sum of squares) on the 
OOB data that results from including each variable(Liaw and Wiener 2002). The Near-Infrared band(0.76 ~ 0.90μm) 
was predicted as the most important virable, which seens different from other forest biomass estimation(Avitabile, 
Baccini et al. 2012). In their study, SWIR spectral band provided the maximum contribution. 
 

http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html


The spatial continuous biomass density was mapped as in Figure 4. The map shows the distribution of AGB across 
the study area as well as the spatial variability of AGB. The shrub biomass density ranges from 1.3 to 8.2 Mg ha-1. 
The frequency distribution of predicted biomass is consistant to that of the training image. The map indicates that 
most of the country presents low biomass density, but the contribution of these areas to the total AGB stock is 
important. Most of the high values of biomass are concentrated around the lakes. The biomass values without the 
use of land cover information were reasonable. 

 
Figure 3 Regression result of predicted and observed biomass, the black line represents 1:1(left); Variable 

importance plots for biomass model, IncNodePurity(x axis) represents the variable importance(right).  

 
Figure 4 Prediction map of shrub biomass in test area of Mu Us sandland 

 

DISCUSSION 
 
For the plot data acquirement, due to the limitation of field work, we could not get the ideal randomly or systematic 
distributed data, but we tended to enlarge the field work area and the dispersed plots distribution. To ensure an 
adequate representation of biomass conditions within the study area, we selected field plots with large range of 
canopy cover and different dominant vegetation. In addition, plot size seems relatively small to ensure that 30m 
image pixel would spatially coincide with each plot because of the bios of images and positioning.  The number of 
measured plots was limited. 
 
Regarding the variable importance, the maximum contribution variable was the NIR band in our study. While in 
other studies it was SWIR band (Baccini, Laporte et al. 2008; Avitabile, Baccini et al. 2012). It’s said that SWIR 



was more important because they allowed effective separation between high and low biomass data. However, in our 
arid and semi-arid sandland areas, the vegetation cover was low and the background of the dryland was bright. 
 
In the following study, we should pay attention to more calibration measurements to test the robust of this method.  
The input of other reasonable and easy to get variables would be considered. Further more, we could compare our 
model with other linar and non-parameter models. 
 
CONCLUSION 
 
In this study, we acquired 39 field plot measurments through 2009 and 2011 in Mu Us sandland, China. Based on 
the non-parameter Random Forest model, we produced the spatially continuous biomass density map of a test area 
in Mu Us sandland using 30m resolution remote sensing observations (Landsat). The high explained variance and 
low RMSE indicate that our Random Forest model had a good performance of AGB estimation in the arid and low 
cover area. NIR band had the maximum contribution in the variable impartance evaluation. Our model still need 
more field work to calibration and assessment. 
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