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Abstract: Forests are vital earth ecosystems that provide a variety of ecological, social and economic values. 
Deforestation and forest degradation, however, have made forests vulnerable, causing significant impacts on global 
climate. Forest resources in Vietnam are decreasing dramatically, especially in Kon Tum province which is located 
in Central Highlands of Vietnam. Quantifying spatial forest change information is important for assessing 
influences of human activities and environmental changes on ecosystem sustainability. This is a report on 
development of new forest monitoring algorithm using Landsat TM and ETM+ dataset.  The algorithm allows fast 
forest classification and change detection. The algorithm was developed based on usage shape of spectral 
reflectance curve. Spectral reflectance curve of similar ground objects is encoded using modulation of the curve and 
using the modulation of spectral reflectance curve forest can be fast and almost automatically extracted from the 
Landsat TM and ETM+ image. An area of Kon Tum province of Vietnam has been used as test site. Validation was 
made by field work conducted in 2012 and comparison with latest land use map. 
 

1. INTRODUCTION 
 
Forest is very important for the earth environment. Recently scientists over the world have agreed that forest has 
strong effects on greenhouse gases (Fearnside, 2000), biodiversity (Lawton et al., 1998;Pimm & Raven, 2000), and 
regional climate (Salati & Nobre, 1991). Forest management requires timely and reliable information on forest 
status and its temporal dynamics. Satellite image has been used for forest monitoring and inventory for decades 
(Hansen et al., 2010a, 2010b, 2008). Especially multichannel satellite image data with spectral information about 
vegetation in near infrared and short wave infrared regions has been recognized to be an effective tool for detecting 
forest extents and changes in countrywide, regional and global scales (Langner et al., 2007; Tottrup et al., 2007; 
Xiao et al., 2009). Forest monitoring can be carried out by low spatial and high temporal resolution satellite images 
such as NOAA, SPOT Vegetation and MODIS (Achard & Estreguil, 1995; Stibig &Malingreau, 2003; Stibig et al., 
2004; Langner et al., 2007; Tottrup et al., 2007; Xiao et al., 2009) or by high spatial and low temporal resolution 
satellite image like Landsat TM/ETM+ (Coppin & Bauer, 1994; Hall, Botkin, Strebel, &Goetz, 1991; Jha & Unni, 
1994; Vogelmann & Rock, 1988). Advantages of Landsat data is that the historical archive of imagery dating back 
to the launch of ERTS in 1972 provides a unique and invaluable data source for tracking forest cover dynamics. But 
due to small coverage there are also many disadvantages rooting from local calibration issues and vegetation 
phenology (Woodcok et al., 2000). 
 
The purpose of this paper is to develop a fast algorithm for forest extraction using spectral patterns which could be 
considered as invariant and stable in both time and location domain. The algorithm should work with both terrain 
corrected and surface reflectance product of the Landsat TM/ETM+. The authors also aim to application for the 
data of the future LCDM. This is a preliminary development of algorithm which can automatically separate forest 
from cropland and other non forest cover. The algorithm had been tested with Landsat TM/ETM+ surface 
reflectance and terrain corrected products from 2001, 2004 and 2010 in Kon Tum province in Vietnam. 

2. MATERIAL AND METHOD 
 
The Landsat TM and ETM+ image data has seven spectral channels as listed in table 1. For this research only six 
channels in visible spectrum will be used and they are numbered in sequence from 1 to 6. The thermal channel will 
not be used. 
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Each pixel in the image is described by a vector of 6 components bi where i=1, 6 and bi is digital number DN in 
each spectral channels. The value DN is converted to top of atmosphere reflectance L  based on the calibration 
coefficients, sun elevation, Earth-sun distance and the mean exoatmospheric solar radiance for each spectral 
channel (Chander 2009).  

 

Where 

=Planetary TOA reflectance [unit less] 
 = Mathematical constant 

L  = Spectral radiance at the sensor�s aperture [W/(m2sr m)] 
d= Earth-Sun distance [astronomical units] 
ESUN = Mean exoatmospheric solar irradiance [W/(m2 m)] 

s= Solar zenith angle [degrees] 
 

Table 1: Spectral characteristics of Landsat TM/ETM+ image data in visible channels 

Band
number TM sensor ETM+ sensor 

1 0.45-0.52 0.45-0.515 
2 0.52-0.60 0.525-0.605 
3 0.63-0.69 0.63-0.69 
4 0.76-0.90 0.75-0.90 
5 1.55-1.75 1.55-1.75 
6 2.08-2.35 2.09-2.35 

 
The authors proposed a fast forest extraction algorithm for such normalized data set. The algorithm is based on 
analysis of spectral pattern of the spectral reflectance curve. Spectral patterns of relevant ground objects could be 
constructed using the USGS 06 spectral library. The USGS spectral library has been developed by continuous 
spectral measuring from UV to mid infrared wave length (Clark et al. 2007). In order to simulate Landsat 
TM/ETM+ spectral reflectance the spectrum in the USGS 06 library has been resampled to 6 visible channels by 
averaging spectral values in respective channel width. Figure 1 show spectral reflectance curves of lawn grass, open 
sea water, dry grass and brick constructed by resampling approach. 

 

 
Figure 1: Construction of spectral reflectance curves by resampling of spectral values in USGS 06 spectral library 



It is obvious that different ground objects have different patterns of the spectral reflectance curves and the spectral 
patterns could be used for object extraction and classification (Duong 1997).  

In order to use the spectral pattern for spectral classification the first step to be done is encoding of the spectral 

 spectral library we can find out that spectral reflectance curve of vegetation after encoding is 

TCI=( 4- 5)/( 5- 6) 

In general the great  the TCI the more com ion community ll have. In case 4 is nearly 

atter plots for pixels of spectral pattern 200002 of a Lan sat TM image. The vertical 

 
Figure 2: Scatter plots of all pixels in Landsat TM image ral p ern 2 2 (right) 

pattern. One of encoding methods is to compare relative positions of vertices of the reflectance curve (Duong 
1997). Let Cij is a value indicating relative positions of vertices i and j on the spectral reflectance curve, Cij is 0 
when i< j, 1 when i= j and 2 if i> j. For a data set with n spectral channels we need a string of (n-1)n/2 digits 
to encode the shape of the spectral reflectance curve. Maximal number of spectral patterns of the data set is 3(n-1)n/2 

(Duong 1997). In case of Landsat TM/ETM+ image data if 6 spectral channels will be used for description of a 
ground object we need string of 15 digits for encoding the spectral reflectance curve. Number of spectral pattern 
types could reach 14,348,907. For forest extraction purpose only 4 spectral channels 2, 3, 4 and 5 without blue 
channel will be used. Therefore code of spectral pattern is consisted of 6 digits only and number of spectral patterns 
reduces to 729. 

Using the USGS
described by a number 200002. Because forest is only one component of vegetation cover and so the pixel which 
has spectral pattern 200002 could be forest or shrub or other vegetation types. But the main difference between 
forest and other vegetation could be seen in canopy structure. Forest usually has complicated canopy structure 
which is not homogeneous and tending to be affected by shadows. The Total reflected radiance index � TRRI 
(Duong 1998) of forest is always smaller than of other ground objects (Duong 1997). By applying thresholds for 
TRRI there is possibility of separation of forest from other vegetation. However, still some bush and other 
vegetation cover due to low background reflectance have the same TRRI like matured forest so the authors 
introduce Tree Canopy Index � TCI which can separate quite good forest from other vegetation cover. The TCI is 
computed by the following formula 

plex canopy the vegetater is  wi

d

equal 5 then TCI is small and when 5 is nearly equal 6 then TCI is very big. Fortunately difference between 5 
and  6 for forest is always remarkable. To avoid these extreme cases during computation ratio  4/ 5 is used to filter 
out other objects from forest. 

Figure 2 shows example of sc
axis is for TRRI values and the horizontal axis shows TCI values. Figure 2a displays spectral plot for all pixels 
without differences in spectral patterns. Figure 2b shows spectral plot for pixels of pattern 200002 only after 
filtering pixels which do not satisfy the tree canopy index thresholds. Color composite used in these figures is R, G, 
B =6, 4, 3. Figure 2a shows all ground objects including water, vegetation and bare land. By using the vegetation 
spectral pattern it is easy to separate vegetation from the other objects. The relation between TRRI and TCI is 
complex. One TRRI value can relate to many TCI values and vice versa one TCI value relates to many TRRI 
values. However, for purpose of separation of forest from other land cover categories it is possible to rely only on 
TRRI and TCI. 
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Algorithm for fast forest extraction from Landsat TM/ETM+ has been developed based on vegetation spectral 

Figure 3: Fast forest extraction algorithm for Landsat TM/ETM+ 

In fact this algorithm is b hold for TRRI to 

pattern 20002, total reflected radian index TRRI and tree canopy index TCI. Block diagram of the algorithm is 
shown in figure 3. 

 

ased on five thresholds T1, T2, T3, T4 and T5 for TRRI and TCI. T1 is thres
separate cloud from forest. T2 is threshold for TCI to divide ground objects to forest and non forest areas. T3 is 
threshold for ratio 4/ 5, T4 is reflectance for channels 6 and T5 is threshold of NDVI. All pixels which do not 



satisfy these thresholds will be classified as non forest. By experiments the authors suggested values for thresholds 
T1, T2, T3, T4 and T5 as shown in table 2. 
 
Table 2: Threshold values for T1, T2, T3, T4 and T5 

Parameters 
Thresholds Thresholds for 

reflectance

 

for L1T 
product 

surface

product 

T1 1.59 2.0 

T2 1.8 1.2 

T3 1.8 1.6 

T4 0  0  .065 .065

T5 0.65 0.80 
 

ata used for this study are standard Landsat TM/ETM+ products observed in 2001, 2004 and 2010 over Kon Tum 

able 3: List of data used 

Granule ID Date of 
ob  Date of processing Product name 

D
province, Vietnam. Details of technical parameters of data are given in the table 3. 
 
T
 

servation

p124r050_7dx20011017.SR.ESDR 26/03/2011 Landsat Surface Reflectance 17/10/2001 

p124r050_7dx20040228.SR.ESDR 28/02/2004 29/03/2011 Landsat Surface Reflectance 

L72124050_05020100316 16/03/2010 6/02/2012 Terrain corrected 
 

ll these products have been terrain corrected. Data from 2001 and 2004 are surface reflectance product. These 

able 4: Calibration coefficients and parameters for conversion of DN to TOA for Landsat ETM+ of 16/3/2010 

Band Gain Bias Exoatmospheric 

A
data are copyrighted to NASA Landsat program, USGS Sioux Falls. Conversion of DN to TOA was necessary for 
only data from 16/3/2010. Coefficients used for conversion of DN to TOA are given in table 4. 
 
T
 

coefficient

1 0.778740 -6.98 1997 

2 0.798819 -7.20 1812 

3 0.621654 -5.62 1533 

4 0.969291 -6.07 1039 

5 0.126220 -1.13 230.8 

6 0.043898 -0.39 84.90 

Earth-su istance Sun ion 56 6 n d 0.99474  elevat .971270
 

igure 4 shows color composites 6,4, 3 for used data. The data from 2004 and 2010 were taken during dry season F
so it is quite easy to detect forest and non forest areas while in data from 2001 taken in late rainy season, both 
vegetation covers: forest and agricultural cultivation are dense and it is very difficult visually to separate each from 
other. 
 



  
 

Figure 4: Color composites of used data 2001 (left), 2004 (middle) and 2010 (right) 
 

3. RESULT AND DISCUSSION 
 
After applying the above algorithm with thresholds given in the table 4 forest covers from the three Landsat scenes 
have been extracted. Let us start with small image subset from 2001 (see figure 5a). By visual interpretation it is 
very easily to recognize forest on mountains while on low land the agricultural cultivation like rice crop dominates. 
There are also industrial tree plantation such as coffee and rubber in different growth stages. Forest in this subset 
allocates mainly in the left with dark green color, agricultural cultivation distributes on right site with different light 
green shades. Figure 5b shows analysis result using spectral pattern 200002 and the TCI. As we can see that still 
many plantation cover remain so we need to remove them by using the thresholds of NDVI and channel 6 and we 
can achieve result as in figure 5c. Based on experiments we found out that reflectance of forest cover is usually 
smaller than reflectance of bush cover in channel 6. However some bush or shrub covers have also low reflectance 
in channel 6 so we need to use NDVI to separate shrub and bush from forest. Figure 6d shows final result of forest 
extraction overlaid on color composite 4, 3, 2. By visual interpretation we can see that non forest cover has been 
almost completely removed and in the image remains only forest cover.  
 

 
a b 
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Figure 5: Forest extraction using the proposed algorithm for a subset of Landsat TM from 2001 

 



 
 

Figure 6: Differences in canopy structure for natural forest (left) and forest plantation (right) 
 

Differences between natural and planted forest can be seen in figure 6. Left image shows natural forest and right 
image shows rubber plantation. 
 
By visual interpretation we can recognize reduction of forest cover and expanding of agricultural cultivation. This 
trend is clearer by using small image subset as shown in figure 8. In 2001 forest distributes on both low land and up 
land but in 2004 it has been shrink to mountain area and in 2010 forest remain only on upper parts of mountains. 
The deforestation is obvious through field GPS photos which have been taken in March 2012 (figure 9). 
Figure 7 shows forest extraction for all three Landsat scenes from 2001, 2004 and 2010 and enlargement in figure 8 
shows more details in forest cover change. 
 

 
 

Figure 7: Forest covers from 2001 (left), 2004 (midle) and 2010 (right) for whole Landsat scenses 
 

 
 
Figure 8: Subset of study area showing details in forest cover changes from 2001 (left) to 2004 (middle) and 2010 

(right) 
 
 



 
 

Figure 9: Deforestation for agricultural cultivation development as observed on ground 
 
Figure 10 shows linkage between classified Landsat 2010 image and GPS photos taken in March 2012. Line gaps in 
the Landsat image were not removed because gap removing could lead to distortion of spectral characteristics of 
image data which can result in miss classification. By fast comparison checking between classification result and 
field photos the authors could confirm that the proposed algorithm works quite well. 
 

 
 

Figure 10: Forest cover from 2010 and field GPS photos marked as red dots for quick validation 
 

4. CONCLUSION 
 
Automated fast forest extraction from single date multispectral image in general and from Landsat image data in 
particular is important issue. Due to vegetation phenology and seasonal change of cropland automated forest 
detection is still challenge. The problem is resolved by using time series image data of low spatial resolution like 
MODIS but it remains still for medium spatial multispectral data like Landsat where it is not available high 
temporal series data. The algorithm proposed in this paper is one of attempts for fast extraction of forest cover using 
single date and high spatial resolution image data without auxiliary information. The algorithm works with both 
Landsat TM/ETM+ terrain corrected and surface reflectance products. It is expected that it will work with the 
future Landsat 8 products as well. The algorithm was developed using spectral pattern of four channels: green, red, 
infrared and short wave infrared. In addition to the spectral pattern indices like TRRI and TCI have been used to 
separate forest from bush and cropland. Study had been carried out in Kon Tum province. Algorithm development 
had been supported by field work in March 2012. The fast forest extraction algorithm could be used for analysis of 
the GLS surface reflectance product of USGS. The GLS SR is quite stable and it is good dataset for base line forest 
mapping in large area 
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