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Abstract: The precise analysis of mineral abundance is a key content of hyperspectral technology research. In the 
present paper, a new spectral unmixing method based on derivative of ratio spectroscopy (DRS) was employed for 
visible to short-wave infrared (VIS–SWIR; 0.4–2.5 µm) reflectance data.  The mixtures of plaster and allochite 
with different proportions were analyzed by DRS, Fully Constrained Least Squares (FCLS) and Non-Negative 
Least Squares (NNLS). A high precision was observed for DRS: for plaster, RMSE at the four bands are all less 
than 1.5%, and PCC are all higher than 0.999; for allochite, the precision is a bit lower, but the highest RMSE is 
still no more than 4.5%. Comparatively, the results for NNLS and FCLS are much worse than DRS. The result 
shows that this new spectral unmixing method is simple, of rigorous mathematical proof, and highly precise. It has 
a great potential in high-precision quantitative analysis of spectral mixture with fixed endmembers. 
 

1. INTRODUCTION  
 
   Hyperspectral technology can extract geology information based on the spectral characteristics of rocks 
and minerals (van der Meero, 1997). Although the mineral species can be identified successfully (Clark, 2003), but 
the precise analysis of the abundance of mineral content is still a tough problem. 
   Due to resolution constraints, most pixel in the hyperspectral data contain more than one kind of land 
covers, and the spectral is actually a mixture of variety of ingredients (Tong, 2006). Generally, spectral mixture 
model can be divided into linear mixing model and nonlinear mixing model (Keshava, 2002). Johnson et.al 
suggested that the mixing of different mineral compositions in rocks belong to intimate mixing, and the mixing 
spectral was a nonlinear mixture of the reflectance spectra of endmembers (Johnson, 1983; Mustard, 1998). Mineral 
spectral features are mainly affected by the composition of endmembers, but the particle shape, the geometric 
orientation of the incident light source, observation geometry, rock structures and some other factors also matter 
(Hapke, 1981). The founded solution framework of mineral radiation transferring model is to convert reflectance to 
single scattering albedo based on multi-particle scattering model and precise description of scattering characteristics 
of mineral particles, and then linear spectral unmixing can be performed (Hapke, 2005; Johnson, 1992). But this 
procedure need to obtain the absorption coefficient, the particle size distribution, the amplitude of backward effect, 
phase angle and some other complex parameters, which are hard to precisely obtain. Besides, the radiation 
transferring model is quite complex. So the application of nonlinear unmixing of minerals is still not very practical. 
   So far, the linear spectral mixing model is still the mostly studied and used spectral unmixing model, 
which is simple, efficient, with clear physical meaning, and relatively accurate in most conditions (Ichoku, 1996). 
Wang et.al studied characteristics of mineral spectral mixtures through spectral simulation in laboratory, and the 
results showed that in shortwave bands the mixed spectrum can be approximated as a linear mixture according to 
the relative content of endmembers (Wang, 2007). Shortwave infrared bands collect more mineral spectral 
characteristics than the visible light bands, and it is of high application value to do linear spectral unmixing using 
shortwave infrared bands.  
   Derivative of ratio spectroscopy is a special spectral processing method, which is widely used in the field 
of chemical analysis. F. Salinas et.al put forward the concept of derivative of ratio spectroscopy, and carried on 
quantitative analysis of UV absorption spectra of mixed solution consisting two components using this new method 
(Salinas, 1990). J. J. Berzas et.al improved the derivative of ratio spectroscopy to achieve a quantitative analysis for 
solution of three components (Nevado, 1992). Until now, the Derivative of Ratio Spectroscopy is still a popular 
method of chemical drug analysis (Bahram, 2012; Vipul, 2007; Zaazaa, 2009). The ratio of spectral processing can 
enhance the contrast of endmembers; derivative spectra processing can reduce the correlation coefficient between 
the similar spectra, extract overlapping absorption features, enhance spectral contrast, and improve the precision of 
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target information extraction (Debba, 2006; Zhang, 2004). Derivative of ratio spectroscopy integrates the 
advantages of ratio spectra processing and derivative spectra processing, has rigorous mathematical proof and clear 
physical meaning, and the accuracy of quantitative analysis is very high; comparing with the method of solving 
simultaneous equations, the derivative of ratio spectroscopy can better separate the overlapping spectra of similar 
components, and has higher computer running efficiency (Erk, 1998). However, no one ever apply the derivative of 
ratio spectroscopy in reflectance spectral unmixing analysis.  
   This paper presents a new way to perform linear reflectance spectral unmixing based on derivative of ratio 
spectroscopy, and uses it to extract the relative contents of minerals in mixtures of two components. Also we 
compare the unmixing results with classic Fully Constrained Least Squares (FCLS) and Non-Negative Constrained 
Least Squares (NNLS) methods, and investigate the practical value of derivative of ratio spectroscopy. 
 

2. METHODS AND EQUATION 
 

2.1 Linear Spectal Mixing Model 

In the linear mixture model, the reflectance of a pixel in each spectral band is expressed as a linear combination 

of the characteristic reflectances of its component endmembers weighted by their respective areal proportions 

within the pixel. Thus, the reflectance ( )ir λ  of a pixel in the i th band is given by 
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with 1, 2, . . . ,i n=  and 1, 2, . . . ,j m=  where, ( )j ir λ denotes the reflectance of the j th component of 

the pixel in the i th  spectral band; jF
 
is the proportion of the j th component in the pixel; ( )iξ λ is the error 

term in the i th  spectral band; m represents the number of spectral bands while n stands for the number of 

components in the pixel. 

Supposing all the endmembers are included, the following normalization constraint will be satisfied 
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Moreover, jF should meet the non-negative conditions 
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 Given the endmember spectral and the mixed spectral, we can solve the composition of endmembers.  

2.2 Derivative of Ratio Spectroscopy (DRS) 

When a pixel contains only two endmembers M and N, the Linear Spectral Mixing Model can be simplified as 

( ) ( ) ( )M M N Nr F r F rλ λ λ= × + ×  （4） 
If equation (1) is divided by the corresponding equation for the spectrum of N, the following equation can be 

written: 
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To obtain the ratio spectral 
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, the reflectance ratio at each wavelength is calculated. For determining M in 

the presence of N, use the first derivative of equation (5) 
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 Equation (6) indicates that the “derivative ratio spectrum” of the mixture is dependent only on the values of MF . 

If equation (6) is divided by 
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At a given wavelength , the fraction of M can be calculated by  
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 N can be determined by an analogous procedure (wavelength not necessarily the same) 
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Data Analysis Techniques 
1. Scheme of Mineral Mixture 

 In the experiment, plaster and allochite samples were crushed into powder, and a set of mixtures of different 
proportions were made under accurate measurement of electronic balance and graduated cylinder. The mineral 
mixture scheme is shown in Table 1. 
 

Table 1 Mineral mixture abundance 
Mixture No. Plaster Allochite 

Mixture 1 
Mixture 2 
Mixture 3 
Mixture 4 
Mixture 5 
Mixture 6 
Mixture 7 

5% 
10% 
30% 
50% 
70% 
90% 
95% 

95% 
90% 
70% 
50% 
30% 
10% 
5% 

 A SVC HR-1024 Hand-held Spectrometer covering the UV, Visible, and NIR wavelengths from 350 nm to 2500 
nm was used to measure in-situ reflectance with a 25° field of view and 1m above the species. Spectral reflectance 
was calculated as the ratio of measured radiance to the radiance from a white standard reference panel. The spectral 



reflectance data were obtained between 9.00pm and 12.00pm, in dark conditions. In order to facilitate the 
subsequent derivation, the original reflectance spectra were resampled to 1nm intervals. 

2. Abundance Calculation Procedure 
 For determining plaster, the stored spectra of the mixtures were divided by the spectra of allochite. The first 
derivatives were calculated with  λ∆ =4nm. The concentration of plaster was proportional to the amplitude of the 
derivative of ratio spectra. For allochite, the corresponding procedure was used. 

3.  Band Choice 
 Mixture 1, 4 and 7 were chosen to set up the calibration set samples, as these nearly covered the whole abundance 
range. Based on the spectral of these mixtures and pure endmembers, the abundance will be calculated at all bands 
through the procedure of 3.2. Then the Pearson Correlation Coefficient (PCC) and the Root Mean Square Error 
(RMSE) would be calculated, and the bands with highest PCC and lowest RMSE would be chosen to build a model 
to calculate the abundance of the other mixtures.  

4.  Spectral Mixture Analysis 
 The spectral mixture analysis presented is a factor analysis method, based on a two-stage procedure: a calibration 
step, in which a mathematical model is built by using component concentrations and spectral data from a set of 
references, followed by a prediction step in which the model is used to calculate the concentrations of unknown 
samples from their spectrums. The first step was introduced in 3.3, in which the best bands to calculate the 
abundance of plaster and allochite were chosen. In the second step, the abundance of the two endmembers in 
Mixture 2, 3, 5 and 6 would be calculated. The evaluating metrics will be the same as in 2.3. 
 

3. RESULTS & DISCUSSION 
 
Figure 1: shows the reflectance spectras. Plaster is a typical sulfate mineral with the formula of CaSO4.2H2O. The 
reflectance spectrum of plaster has three consecutive water absorption features at 1449nm, 1490nm and 1535nm, a 
diagnostic sulfate absorption feature at 1750nm, and a strong water absorption feature at 1948nm. Allochite is a 
kind of calcium silicate with the formular of Ca2Fe3+Al2O.OH.Si2O7.SiO4. The spectrum of allochite has an 
absorption feature of Fe-OH at 2256nm, and a diagnostic strong absorption feature between 2335nm and 2342nm. 
The spectrums of mixtures are between plaster’s and allochite’s, and the spectral feature are a combination of both 
of them. 
 

 

Figure 1: Original reflectance of mixtures and endmembers 

 Figure 2: shows the ratio spectra of mixtures and endmembers (a: spectrums divided by the spectrum of allochite; 
b: spectrums divided by the spectrum of plaster). As shown in the figure, plaster’s strong spectral features are 
prominent in Fig.2a, while in Fig.2b allochite’s are prominent. In summary, spectral ratio procedure can suppress 
the divisor’s spectral feature as background and highlight the other component’s features. 
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(a)                                                                                         (b) 

Figure 2: Ratio spectra of mixtures and endmembers 
(a:Ratio spectra of Plaster(divided by reflectance of Allochite); 
b:Ratio spectra of Allochite(divided by reflectance of Plaster)) 

 
 Figure 3:  shows the first derivatives of the ratio spectra. The first-derivative amplitudes at most wavelengths are 
proportional to the abundance of plaster or allochite (a: proportional to plaster; b: proportional to allochite). As can 
be seen from formula (6), derivative of ratio spectra is linear correlated with one component’s abundance, 
independent of the other’s. In other words, through the procedure of the first derivative of ratio spectra, we can 
eliminate the influence of one kind of component, while making the spectral values linear correlated with the other 
component. Any band in the derivative of ratio spectra can be used to solve the abundance of  one of the component 
with equation (8) or (9). In order to achieve more accurate result, the abundance of plaster and allochite would be 
solved separately with different bands. 

 
(a)                                                                   (b) 

Figure.3: Ratio-derivative spectra of mixtures of Plaster and Allochite 
(a:Ratio-derivative spectra for Plaster(divided by reflectance of Allochite); 
b:Ratio-derivative spectra for Allochite(divided by reflectance of Plaster)) 

 
Table 2 and Table 3 show the result of band choice (detailed description in 3.3). The listed bands have the highest 

PCC and the lowest RMSE, and the rank of PCC and RMSE are consistent with each other for these four bands. For 
plaster, the best bands are around 1738~1740 nm and 1437nm. While for allochite, the top four bands are around 
1512~1513nm and 1857~1858nm. 
 

Table 2: Band Choice Result of Plaster 

Samples 
Calculated Abundance of Selected Bands Actual 

Abundance 
Rank1:1740nm Rank 2:1739nm Rank 3:1738nm Rank 4:1437nm 

Allochite 0.00000  0.00000  0.00000  0.00000  0% 
Mixture1 0.05159  0.04564  0.04649  0.04742  5% 
Mixture4 0.50340  0.50076  0.49772  0.49645  50% 
Mixture7 0.94967  0.95223  0.95297  0.94056  95% 

Plaster 1.00000  1.00000  1.00000  1.00000  100% 
RMSE 0.00168  0.00222  0.00230  0.00465   
PCC 1.00000  0.99999  0.99999  0.99997    
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Table 3: Band Choice Result of Allochite 

Samples 
Calculated Abundance of Selected Bands Actual 

Abundance 
Rank1:1513nm Rank 2:1512nm Rank 3:1857nm Rank 4:1858nm 

Allochite 1.00000  1.00000  1.00000  1.00000  100% 
Mixture1 0.95569  0.95211  0.94634  0.95880  95% 
Mixture4 0.49372  0.50470  0.49860  0.50082  50% 
Mixture7 0.04655  0.06101  0.06359  0.06802  5% 

Plaster 0.00000  0.00000  0.00000  0.00000  0% 
RMSE 0.00409  0.00543  0.00632  0.00898   
PCC 0.99997  0.99996  0.99993  0.99987    

 
 Assuming the compositions in Mixture 2, 3, 5, and 6 are unknown, we use the selected bands to solve the 
abundance of plaster and allochite in these four mixtures. The results are summarized in Table 4 and Table 5. A 
high precision was observed for DRS: for plaster, RMSE at the four bands are all less than 1.5%, and PCC are all 
higher than 0.999; for allochite, the precision is a bit lower, but the highest RMSE is still no more than 4.5%. 
Comparatively, the results for NNLS and FCLS are worse than DRS, and NNLS is much better than FCLS. It is 
noteworthy that for NNLS, the accuracy of allochite is higher than plaster, which is just opposite of DRS.  The 
reason need to be more detailed research. 
 

Table 4: Spectral Unmixing Results for Plaster 

Samples 
Calculated Abundance 

NNLS FCLS 
Actual 

Abundance 
1740nm 1739nm 1738nm 1437nm 

Mixture2 0.10067  0.09855  0.09985  0.10340  0.07626  0.06730  10% 
Mixture3 0.29504  0.28925  0.28432  0.29173  0.21719  0.19625  30% 
Mixture5 0.72632  0.72237  0.72069  0.71699  0.55378  0.52969  70% 
Mixture6 0.91153  0.90772  0.90606  0.89971  0.78388  0.77665  90% 

RMSE 0.01458  0.01301  0.01333  0.00960  0.10282  0.11838   
PCC 0.99966  0.99960  0.99947  0.99963  0.99659  0.99409    

 
Table 5: Spectral Unmixing Results for Allochite 

Samples 
Calculated Abundance 

NNLS FCLS 
Actual 

Abundance 
1513nm 1512nm 1857nm 1858nm 

Mixture2 0.92202  0.93304  0.90295  0.91022  0.89259  0.93270  90% 
Mixture3 0.73887  0.74509  0.72006  0.72619  0.71002  0.80375  70% 
Mixture5 0.22197  0.23516  0.28719  0.29238  0.36248  0.47031  30% 
Mixture6 0.10414  0.11434  0.13282  0.13641  0.19097  0.22335  10% 

RMSE 0.04500  0.04340  0.02033  0.02331  0.05553  0.11838   
PCC 0.99388  0.99444  0.99857  0.99863  0.99994  0.99409   

 
4. CONCLUSIONS 

 
 We presented a new spectral unmixing method based on Derivative of Ratio Spectroscopy, and applied it to solve 
the concentrations of mineral powder mixtures. The new method could combine the advantages of ratio 
spectroscopy and derivative spectroscopy, and could solve the concentration of different components separately 
with only one band. A complete model building and predicting procedure has been accomplished.  
 According to the results, DRS can be successfully applied in spectral unmixing, which is simple in application 
and provides reliable analytical results. Through further study, this method can be developed to resolve more 
complex mixtures, and it has a great potential in mineral component analysis. Besides, DRS can be used to research 
on the spectral mixing mechanism through analyzing the results at different bands. 
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