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Abstract: A hyperspectral image has a data structure including rich information, widely used for remote sensing 
techniques. A lot of classification techniques for the image are studied, and especially supervised classification 
techniques show high accuracy. However, supervised techniques classify hyperspectral images with law accuracy, 
with little number of training samples. In this study, a method increasing the number of training samples using 
spatial and spectral information is proposed to improve supervised hyperspectral classification accuracy. 
Experimental results are presented for a synthetic hyperspectral image and a real hyperspectral image, i.e. the 
Takasaka Farm Image acquired by CASI sensor over the farm in Yamagata, Japan. In a test on a synthetic data, 
efficacy of the proposed approach is proved. In addition, in a test on Takasaka Farms Image, the number of training 
samples was increased from 40 to 31,188, and in SVM classification results, overall accuracy increased from 
77.72% to 92.27%. 
 
1. INTRODUCTION 
 
 Hyperspectral images have a structure including rich information and are widely used for remote sensing 
techniques. Acquired by Airborne or spaceborne sensors, hyperspectral images are composed of hundreds of 
images corresponding to each of observed channel. This rich information increases the capability to distinguish 
different physical materials in the image. Thus, it is effective to classify collected imagery into distinct material 
constituents relevant to particular application, and produce classification maps that indicate where the constituents 
are present. This process contributes essential information to landcover maps for environmental remote sensing, 
surface mineral maps for geological applications and precious mineral exploration, vegetation species for 
agricultural or other earth science studies, or manmade materials for urban mapping. However, the hyperspectral 
classification process isn�t so simple due to characteristic problems which come from the rich information of the 
hyperspectral image, such as the curse of dimensionality. 
 Recently, a lot of classification techniques are studied. At present, as compared to supervised ones, high precision 
classification result hasn�t been acquired by unsupervised classification techniques, primarily due to the inherent 
ambiguity that exists in the way in which non-normal data distribution can be statistically represented. On the other 
hands, supervised techniques, in particular, using kernel-based methods or support vector machines (SVMs), have 
successfully revealed better accuracy in hyperspectral image classification. In addition, new techniques such that 
the existing pixel-wise supervised classification techniques are combined with spatial information acquired from 
the image are studied, which increase classification accuracy by declining the number of pixel-wise 
misclassifications, mainly estimating an outline of each object in the image, or merging a pair of spatially adjoining 
pixels being spectrally near. However, in these techniques, a lot of training samples are required, and when little 
number of training samples are available, high classification accuracy isn�t achieved because the underlying data 
distribution is not properly captured. 
 In this paper, a new preprocessing approach for supervised hyperspectral classification is proposed, which 
improves supervised hyperspectral classification accuracy with little number of training samples by increasing the 
number of training samples, using spatial and spectral information. In this process, spatial continuity and spectral 
similarity in each constituent�s class are assumed. Experimental results are demonstrated on a synthetic 
hyperspectral image, and a real hyperspectral airborne image recorded by the Compact Airborne Spectrographic 
Imager (CASI) over the Takasaka farm of Yamagata prefecture, Japan. 

2. SPECTRALLY-SPATIALLY INCREASING TRAINING SAMPLES 
 

In the proposed approach, it is assumed that spectra in the same class are similar to each other. In addition, all 
spatial objects in an image are composed of one or several pixels, and these pixels in the same object belong to the 
same class. Thus, spatial continuity of pixels in the same class is assumed. Some labeled pixels in an image are 
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given as training samples. Using them, unlabeled pixels in the image would be labeled as a new training sample. 
The process is specified in the following section. 
 
2.1. Region Growing with Adjoining Pixel’s Similarity 

Dissimilarity criterion values between labeled pixels and the adjoining unlabeled ones are calculated by the 
standard Spectral Angle Mapper (SAM). The SAM measure between u i and uj (ui, uj  RB) determines the spectral 
similarity between two vectors by computing the angle between them. 
 

 (1)

where B is the number of bands, ui={ui1,�,uiB}T and uj={uj1,�,ujB}T are reflectance vectors corresponding data 
index i and j. 

A pair having smallest SAM value is selected, and an unlabeled pixel of the pair is labeled same as the other 
labeled one. This process is repeated until there is no pair whose SAM value is under threshold. 
 
2.2. Robust Color Morphological Gradient (RCMG)  

Aforementioned process is considered as region growing from labeled pixels, taken as seeds of the regions. This 
approach is based on spectral similarity and pixel�s spatial continuity in the same class. However, when the process 
is applied and adjoining similar pixels are captured in a certain region, some pixels belonging to other classes could 
be captured too, in case they are similar to and adjoin the region. In addition, in a case when two objects 
constructed of different similar constituents spatially adjoin each other in an image, a region could grow beyond a 
boundary of the objects and some pixels in each object could be labeled the same.  

To avoid that, spatial gradient of pixels in the image is considered in the proposed approach. Regions are 
prevented from growing beyond object�s boundaries by being prohibited to grow in directions where a value of 
gradient increases, because there are any large spectral difference like an object�s boundary in an area having a 
large amount of gradient. The gradient is calculated by using a robust color morphological gradient (RCMG). 

For each pixel vector xp, let X = [xp
1,xp

2,...,xp
e] be a set of e vectors contained within a structure element E. The 

RCMG, using the Euclidian distance, is defined as  
 

 (2)

where REMr is a set of r furthest apart vector pairs in E removed to avoid the effect of outliers. By calculating 
RCMG, each pixel in the image is given a value representing if there is any pairs of pixels having huge spectral 
distance nearby. If there is a pair like that around a certain pixel, the pixel is given a high RCMG value. In the 
proposed approach, unless RCMG is less than a given threshold, regions are prohibited from growing in directions 
where RCMG increases. It prevents regions from growing to spatially enter other object�s space constructed of 
different constituents and grow within the space.

 
2.3. Evaluation with Class Mean Vectors 

In the process described above, the number of training samples is increased by region growing from pixels 
initially labeled as training samples. In addition, it is prevented for regions to spatially enter from one object to 
another beyond a boundary. However, in case there is a boundary having relatively too little RCMG (it means the 
boundary is of relatively too similar objects), a region could grow beyond the boundary, because regions grow in 
direction where RCMG value increase unless the value beyond threshold. To avoid that, when an unlabeled pixel x* 
satisfies aforementioned condition and  is labeled as a training sample of the class C, SAM between it and a class 
mean vector is calculated per each class. If the SAM value between x* and a class mean vector of the class C is 
smaller than the others� SAM value, the pixel x* is permitted to be labeled as a training sample of the class C. By 
this process, it is possible to avoid regions growing beyond boundaries having relatively smaller RCMG.  
 



  

 

  (a)                                                                                         (d) 

  Figure 1: Synthetic Hyperspectral Data 

 

It is assumed that within-class variances of SAM values are identical here. Though the difference of the 
variances should be considered, it is difficult to predict correct amount of the variance in each class, especially in 
case there is little number of training samples is assumed. 

 

3. EXPERIMENTAL RESULTS 
 
 Two different images were used for the experiments. One of them is a synthetic image and the other is a real 
image, acquired by CASI airborne imaging spectrometers.  These images and the corresponding results are 
presented in the next two sections. 
 
3.1 Experiment 1: Synthetic Hyperspectral Image 
 
 A synthetic hyperspectral image, simulated with the four pure spectral signatures in Fig.1 (a), was used for a test 
of proposed approach. The image was simulated by assuming that the pixels located at the 4 pixels (M1-M4 in 
Fig.1 (b)) of an image circle consist of 100% abundance, with their immediate neighboring pixels made up of 
linearly reduced abundance fractions, until a fraction of 0% is simulated outside the imaginary circle (see Fig.1 (c)). 
Where some of the circles are overlapped, the spectra are mixed (Fig.1 (d)). The size of the image is 30 by 30 
pixels, and a radius of the circles is 25 pixels.  
 To the image, a proposed approach was applied in four patterns for comparison, only adjoining pixel�s SAM were 
used (Fig.2 (i)), adjoining pixel�s SAM and RCMG value were used (Fig.2 (ii)), adjoining pixel�s SAM and class 
mean SAM were used (Fig.2 (iii)), and all of three values were used (Fig.2 (iv)). A pixel located at a center of each 
circle was used for an initial training sample for each class, and used for the proposed approach. In each patterns, 
threshold of adjoining pixel�s SAM was set to mean value of the SAM of all pairs in the image (Fig.2 (a)), it added 
to standard deviation of the SAM of all pairs in the image (Fig.2 (b)), and it added to double amount of the standard 
deviation (Fig.2 (c)).   
 



       

 

 

(i-a)                                    (ii-a)                               (iii-a)                               (iv-a) 

     
 (i-b)                                  (ii-b)                             (iii-b)                  (iv-b) 

      
 (i-c)                                 (ii-c)                                (iii-c)                 (iv-c) 
Figure 2: Synthetic hyperspectral image. (i) Only adjoining pixel�s SAM are calculated. (ii) Adjoining pixel�s 
SAM and RCMG are calculated. (iii) Adjoining pixel�s SAM and SAM with class mean vectors are calculated. (iv) 
All of three values are calculated. From (a) to (c), different thresholds of adjoining pixel�s SAM are used. (a) A 
mean value of the SAM of all pairs in the image. (b) A sum of standard deviation of the SAM of all pairs in the 
image and the threshold of (a). (c) A sum of twofold standard deviation of the SAM of all pairs in the image and 
threshold of (a). 
 
Table 1: Result for the Takasaka Farm image. Number of labeled samples in reference data (No. of samples), 
Number of increased training samples (No. of increased TS), Number of increased training samples labeled in a 
reference data  (No. of increased TS known correct label), Accuracy of increased training samples calculated with a 
reference data, ignoring ones unlabeled in a reference data (Accuracy of increased TS), SVM classification 
accuracy with training samples before increased (SVM by former TS), and after increased by the proposed 
approach (SVM by increased TS) 

 No. of 
samples 

No. of 
increased 

TS 

No. of 
increased 
TS known 

correct 
label 

Accuracy of 
increased TS 

SVM by former 
TS 

SVM by 
increased TS 

OA    100 77.72 92.27 
AA    100 78.74 84.59 

    100 71.69 89.83 
Leaf of apple 1317 536 63 100 67.50 48.60 
Leaf of cherry blossom 1685 87 76 100 65.52 58.34 
Leaf of chestnut 4846 1307 1182 100 65.74 90.78 
Leaf of persimmon 247 413 166 100 84.21 97.17 
Leaf of grape and soil 5804 2846 2660 100 42.61 96.55 
Paddy 12347 5386 5023 100 94.99 100 
Soil 1810 24 22 100 90.55 84.64 
Soil through plastic 609 229 229 100 94.91 97.04 
Concrete 2458 19 18 100 96.75 97.36 
Bldg 65 7 7 100 84.62 75.38 
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 (b)                                                                                            (c) 

  
 (d)                                                                                            (e) 

  
 (f)                                                                                             (g) 

  
 (h)                                                                                          (i) 
 
Figure 3: Takasaka farm image. (a) Tree-band color composite. (b) Reference map. (c) Increased training samples 
(TS) map. (d) SVM classification map with original TS. (e) SVM classification map with TS of (c). (f) Increased 
TS with lower threshold. (g) SVM classification map with TS of (f). (h) Increased TS with higher threshold. (i) 
SVM classification map with TS of (h). 
 
By comparison of Fig.2 (i) with Fig.2 (ii) (even the same as Fig.2 (iii) and Fig.2 (iv)), it is shown that regions grow 
around boundaries between dissimilar objects (M1-M2-M3 and M4) only when RCMG is used. In addition, by 
comparison of Fig.2 (i) with Fig.2 (iii) (even the same as Fig.2 (ii) and Fig.2 (iv)), position of boundaries between 
grown regions, particularly M1 and M2 or M2 and M3, are clearly appropriate when class mean SAM is used. 
 
3.2 Experiment 2: the Takasaka farm Image 

 The proposed approach is tested for a real image too. The Takasaka farm image is acquired by the CASI sensor 
over the Takasaka farm owned by the Yamagata University in Yamagata prefecture, Japan. The image has a size of 
211 by 593 pixels, with a spatial resolution of 1.5 m/pixel. The number of data channels in the image is 67 (with a 
spectral range from 0.43 to 1.06 µm). 10 classes of interest are considered, detailed in Table.1, Fig.3, shows a three- 
 
 



Table2:  Result for the Takasaka Farm image with lower and higher threshold for the proposed approach. Number 
of increased training samples (No. of increased TS), Number of increased training samples labeled in a reference 
data (No. of increased TS known correct label), Accuracy of increased training samples calculated with a reference 
data, ignoring ones unlabeled in a reference data (Accuracy of increased TS), SVM classification accuracy for 
training samples after increased by the proposed approach (SVM by increased TS) 

 

 Lower threshold Higher threshold 
 No. of 

increased 
TS 

No. of 
increased 
TS known 

correct 
label 

Accuracy 
of 

increased 
TS 

SVM by 
increase 

TS 

No. of 
increased 

TS 

No. of 
increased 
TS known 

correct 
label 

Accuracy 
of 

increased 
TS 

SVM by 
increase 

TS 

OA   99.99 90.37   100 90.33 
AA   99.99 85.23   100 84.03 

   99.99 87.65   100 87.30 
Leaf of apple 613 75 100 48.75 374 28 100 61.50 
Leaf of cherry blossom 3214 824 99.88 78.04 35 32 100 58.69 
Leaf of chestnut 2825 2342 100 95.73 243 228 100 72.68 
Leaf of persimmon 589 212 100 97.17 258 108 100 89.88 
Leaf of grape and soil 5938 4465 100 95.73 382 382 100 97.26 
Paddy 5704 5256 100 90.59 4644 4331 100 100 
Soil 62 55 100 87.46 23 21 100 88.84 
Soil through plastic 393 393 100 94.91 46 46 100 95.57 
Concrete 189 172 100 97.80 13 12 100 97.44 
Bldg 7 7 100 66.15 7 7 100 78.46 

 
 
band true color image and the reference data. Four pixels for each class were randomly chosen from the reference 
data as training samples. The classification accuracy of the proposed method is shown in Table.1.  
 In addition, each of original training samples and training samples increased by the proposed approach were used 
for the multiclass one versus one SVM classifier with the Gaussian radial basis function kernel parameters chosen 
by four-fold cross validation: in each classifier, a penalty parameter C is from 1024 to 8192, a width parameter  of 
RBF-kernel is from 0.0156 to 0.1250. The classification accuracy is shown in Table.1. 
 From the Table.1, training samples were increased with a high accuracy by the proposed approach. However, 
many pixels which were unlabeled in the reference data were added to training samples too. As a result of each 
SVM classification using original training samples and training samples increased by proposed approach, OA, AA, 
 were higher in classification using latter training samples.  

 On the other hand, some class�s classification accuracies, especially �Leaf of apple� and �Leaf of cherry 
blossom�, were lower in classification using training samples increased by the proposed approach. It is because 
relatively low number of training sample for these classes were captured even though these classes had many 
labeled pixels in a reference data, due to objects belonging to these classes narrowly spread spatially continuously, 
and scattered in the image.  
 The result of increased training samples when values of threshold were set lower is shown in Fig.3 (f), Table.2. In 
this case, increase of training samples in each class became larger, including more uncertain pixels for training 
samples which had a different label or unknown in a reference data. SVM classification result with these increased 
training samples is shown in Fig.3 (g), Table.2. Especially in �Leaf of cherry blossom� class, the classification 
accuracy became improved, due to a lot of training samples of the class was captured. However, the classification 
accuracy of other classes, especially �Paddy� class, was decreased. It might be affected by some pixels spatially 
located around objects of �Leaf of cherry blossom�, labeled as the class�s training samples even though they might 
belong to different classes.  
 On the other hand, when values of threshold were set higher, the result of increased training samples became as 
Fig.3 (h), Table.2. In this case, increase of each class�s training samples became smaller, and there were less 
uncertain training samples in the increased ones. SVM classification result with these increased training samples is 
shown in Fig.3 (i), Table.2. In this classification result, �Leaf of chestnut� class�s classification accuracy became 
especially less than the others, due to the number of the class�s training samples were less than the others. However, 
because there is less difference of the number of training samples between classes, classification accuracy of �Leaf
of apple� class is not much low with a little number of the class�s training samples. 
 



4. CONCLUSION 
 
 In this study, an approach increasing the number of training samples using spectral and spatial information is 
proposed to improve supervised hyperspectral classification accuracy with little number of training samples. In 
addition, efficacy of the proposed approach was shown by applying it to a synthetic hyperspectral image, and the 
approach was tested on a real hyperspecral image. It is shown that SVM classification accuracy was improved by 
increasing the number of training samples. However, some classes� training samples couldn�t be captured much in 
case the class�s objects were spatially scattered in an image. In the result, the classification accuracy of spatially 
scattered classes is lowered. To solve this problem, scattered objects belonging to the same class must be captured 
as training samples. Furthermore, not only increasing the number of training samples, but also selecting effective 
samples for classification must be done. Otherwise, training samples could be increased locally in probability 
density distribution of a class, and then the distribution of the classification result could be different from an ideal 
one. 
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