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Abstract: This study aims to apply remote sensing approach for estimating above ground forest biomass of the 
Western Tiger Landscape of Nepal. Multi-temporal radar imageries of L-band ALOS/PALSAR were used to 
provide data of radar backscatter coefficients. In-situ data of above ground forest biomass was calculated from the 
field inventory data using an allometric equation. In total, there were 14 ALOS/PALSAR scenes and 358 forest 
plots which were analyzed to meet the objectives. The relationships between radar backscatter coefficient and in-
situ above ground forest biomass were analyzed over a grid with cell size of 9 by 9 pixels (approximately 1 
hectare). Then, a non-linier regression approach was used to develop a biomass model. Finally, the best-fit biomass 
model was applied to produce biomass map of the study area. 
 
In comparison between the radar backscatter of mono- and multi-temporal L-band ALOS/PALSAR imageries, the 
multi-temporal data generally shows a better correlation with the above ground forest biomass calculated from field 
data. The multi-temporal approach compensates variable climatic conditions of a single radar image. The biomass 
model which developed using a non-linier regression analysis successfully produced biomass map. However, the 
accuracy should be improve and like other similar research that utilize radar backscatter coefficient to estimate 
biomass, use of L-band also has a constraint in terms of biomass saturation (around 100-150 t/ha). Although, the 
saturation level for L-band is quite high (>100 t/ha) compared to the reported values for X- and C-band (30-50 
t/ha). 
 
 
INTRODUCTION  
 
Global concerns on issues related to climate change and global warming have also increased interest in the role of 
forests in reducing greenhouse gasses emissions. Forests are known as the major carbon sinks that approximately 
account for 72% of the earth’s terrestrial carbon storage and absorb one twelfth of the atmospheric carbon dioxide 
stock every year (Ghasemi et al., 2010). An international initiative on “Reducing Emissions from Deforestation and 
forest Degradation and the role of conservation, sustainable management of forests and enhancement of forest 
carbon stocks in developing countries” (REDD+) provides an opportunity for a developing country like Nepal, of 
not only mitigate the climate change, but can also support livelihood and preserve the biodiversity of forest 
ecosystems. Accurate measurements of biomass and carbon stocks and the subsequent monitoring of the forest 
carbon pool are essential requirements for a successful implementation of REDD+ (Asner, 2009; Gibbs et al., 
2007).   
 
Biomass is defined as mass of live or dead organic matter that includes the above-ground and below-ground living 
biomass, dead mass, and litter (GTOS, 2009). The largest carbon pool are typically stored in the aboveground living 
biomass, thus, estimating aboveground forest biomass (AGB) is the most important step in quantifying carbon 
stocks from forests (Gibbs et al., 2007). The most accurate ways of calculating biomass data is based on field 
measurement through destructive sampling or allometric equations method (Englhart et al., 2011, Lu, 2006). 
However, these methods are often cost and time consuming, labor intensive, have limited spatial distribution, and 
impractical especially in remote areas (Englhart et al., 2011; Gibbs et al., 2007; Lu, 2006). Remote sensing 
techniques have the capacity to overcome the limitations of conventional field measurement methods and have now 
become the primary source in estimating AGB (Lu, 2006; Patenaude et al., 2005).  
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The acquisition of high quality remote sensing data by optical sensors are often hampered by the frequent cloud 
covers. In such conditions, microwave remote sensing or radar is the only feasible source of remotely sensed data 
because of their advantages in weather and daylight independency (Lu, 2006). The land cover and terrain properties 
such as surface roughness and moisture content, as well as the properties of radar sensor such as wavelength, 
polarization, and incidence angle influence the radar capability on biomass estimation (Englhart et al., 2011). A 
number of studies have shown that the radar backscatter in the longer wavelengths (L- or P-bands) is more highly 
correlated with the forest parameters such as tree age, tree height, DBH, basal area, and AGB compare to the 
shorter wavelengths (C-band) (Lu, 2006). The use of L-band of ALOS/PALSAR data for calculating biomass have 
been investigated by many researchers using different approaches (Englhart et al., 2011; Lucas et al., 2010; 
Mitchard et al., 2011; Morel et al., 2011; Sarker et al., 2012; Sun et al., 2011). This study aims to investigate the use 
of multi-temporal and dual polarizations of ALOS/PALSAR data in estimating forest biomass in the Western 
Terain Landscape of Nepal. 
 
 
STUDY AREA 
 
The study site is situated in the most western Terai Landcape of Nepal, particularly Kailali and Kanchanpur 
districts. The area stretches from lowland of Terai in the south and touches a bit portion of Siwalik region in the 
northern part, with elevation varies within south-north segment from 130 to 1900m above the sea level. Climate 
varies from tropical to sub-tropical depending upon the geographical variation. This area covers part of the 
conservation area of Nepal, which were established in order to preserve the biodiversity, forests, soil, and 
watersheds of the Terai and Churia Hills. Furthermore, it is home to the coexistence of the few remaining habitats 
of three endangered large mammals (Tigers, Elephants and Rhinos) as well as many other important flora and 
faunas (Gurung and Kokh, 2011). 
  

  
Figure 1: Location of the study area overlay with the ground plots and ALOS/PALSAR scene outlines. 

 
 
DATASETS 
 
Forest field inventory data were collected from the Forest Resource Assessment (FRA), Nepal. The data were 
measured during field campaign in 2010-2011, as part of the bilateral co-operation project between Governments of 
Nepal and Finland (http://franepal.org/index.php). In total 358 plots were measured, consist of plots in agricultural 
area (Ag), several forest type including Sal - Shorea robusta (S), Acacia catechu and Dalbergia sisso (KS/SK), 
Tropical mixed hardwoods (TMH), Lower mixed hardwood (LMH), and Pinus roxburghii (Pr), and others (SB). 
Trees within a circular plot of 20m radius were measured and structural parameters including tree height, diameter 
at breast height (DBH), and tree species were collected in order to calculate the above ground biomass (AGB) using 
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allometric equations. The calculation procedure produced a plot-wise AGB in tons per hectare. Overall number of 
plots was 358 plots located in both scenes. 
 
In order to cover the whole study area, multi-temporal of ALOS/PALSAR data from two scenes between 2007 and 
2010 were collected from JAXA, with a total of 8 images from scene 518-560 and 6 images from scene 519-560. 
All data were acquired in fine beam dual mode (HH and HV polarization) at off-nadir angle of 34.3° and delivered 
in Level 1.5 processing level as a geocode multi-look image with a pixel spacing of 12.5m.  
 
 
METHODS 
 
The ALOS/PALSAR data were processed in order to derive backscatter coefficient in decibel values. The following 
processing steps were carried out including terrain correction, co-registration, radiometric calibration and adaptive 
filtering. With the use of 90m resolution of DEM (Digital Elevation Model) from SRTM (Shuttle Radar 
Topography Mission), terrain correction was done in ASF MapReady software to reduce effects of illuminated 
target area caused by topography and SAR image geometry. For multi-temporal processing and analysis, co-
registration was performed in order to align the images on pixel level and remove shifts between images on 
different dates. Radiometric calibration was applied for all scenes using the following equation: 
 
σ°[dB] = 10log10(DN)2 + CF          (1) 
 
where σ° is the backscatter coefficient, DN is the digital number of image pixel, and CF is the calibration factor set 
at -83 (Shimada et al., 2009). The images were then filtered using Lee filter with 3 by 3 pixels window size to 
reduce speckle in the images. For multi-temporal approach, single images of each scene were averaged and 
analyzed in yearly and whole time span basis. 
 
The relationships between the resulted radar backscatter values and the AGB values from field measurement were 
analyzed over a grid with a cell size of 9 by 9 pixels (approximately 1 hectare), to match the scale of the regression 
model. Then, a non-linier regression approach was used to develop a biomass model. Finally, a biomass map of the 
study area was produced using the best-fit biomass model. 
 
 
RESULTS & DISCUSSIONS 
 
Above ground biomass calculated from the forest field inventory data were analyzed for each cover and forest 
types, and presented in box-plots (Figure 2). The diagram provides visual representation of the data distribution, 
shows the first quartile, third quartile and median of biomass for each class, and also highlights those values that are 
greatly differ from the other values or outlier. 
 
The largest number of plots lies in the predominant forest TMH (Tropical Mixed Hardwoods) with 281 plots, 
followed by Sal forest (49 plots), LMH (14 plots), Pr (7), KS/SK (4 plots), agriculture (2 plots), and others (1 plot). 
The minimum AGB value is 0.981 tons/ha and maximum is 1835.212 tons/ha, with mean value is 290.781 ton/ha. 
From Figure 2a, it is clear that AGB in Sal forest is the highest (average of more than 250 tons/ha), followed by 
TMH, LMH, Pinus roxburghii, Acacia catechu and Dalbergia sisso, Agriculture, and others. 
 
As can be seen from Figure 2a, outliers are clearly viewed at higher biomass especially in TMH forest type. For 
analysis purpose, AGB with more than 600 tons/ha were excluded in order to remove the outliers and the diagram 
of the result are visualized in Figure 2b. Due to limited number of plots, only Sal and TMH forest type are 
considered for further analysis. In the end, the number of plots used for biomass regression modeling was 236 plots, 
with 123 plots located in each scene. 
 
 
 
 
 
 
 
 
 



 
(a)   (b) 

Figure 2: Box-plot of the AGB calculated from field data with (a) All datasets; (b) Exclusion of plots with AGB 
more than 600 tons/ha 

 
Pearson’s product moment correlation between AGB and backscatter coefficient were calculated to evaluate the 
correlation strength for different forest type (all classes, Sal, and TMH), polarization (HH and HV), and temporal 
data (single- and multi-dates). Table 1 and Table 2 shows the value of r and their corresponding p-values for scene 
518-560 and 519-560, respectively. When comparing the value of r for different forest types with the value of all 
classes, in general, there is no improvement in the use of specific forest type (either Sal or TMH). The reason could 
be that the samples plots were not in sufficient number to analyze forest class separately, especially for Sal forest. 
 
Table 1: Pearson’s product moment correlation between AGB and backscatter coefficient for scene 518-560 
 

  Scene 518-560 
  All classes Sal TMH 
  HH HV HH HV HH HV 

15 Jun 2007 r 0.3405 0.3939 0.39187 0.3296 0.24973 0.34167 
p-value 0.0002 2.059e-06 0.2627 0.3522 0.0152 0.00075 

15 Sep 2007 r 0.4951 0.4126 0.18189 0.38584 0.45182 0.35794 
p-value 3.825e-08 7.452e-06 0.615 0.2708 4.85e-06 0.00039 

2007 r 0.4247 0.4121 0.41671 0.3895 0.3512 0.35592 
p-value 3.747e-06 7.699e-06 0.2309 0.2659 0.00051 0.00043 

2 May 2008 r 0.4685 0.4317 0.26877 0.47464 0.42453 0.42141 
p-value 2.437e-07 2.48e-06 0.4527 0.8964 2.004e-05 2.338e-05 

2008 r 0.4685 0.4317 0.26877 0.47464 0.42453 0.42141 
p-value 2.437e-07 2.48e-06 0.4527 0.8964 2.004e-05 2.338e-05 

20 Jun 2009 r 0.4384 0.3967 0.03875 0.29315 0.42445 0.36194 
p-value 1.66e-06 1.779e-05 0.9153 0.411 2.012e-05 0.00033 

5 Aug 2009 r 0.4321 0.36788 0.4565 0.25301 0.37315 0.330107 
p-value 2.431e-06 7.688e-05 0.1847 0.4806 0.00021 0.001157 

20 Sep 2009 r 0.4364 0.34517 0.63212 0.9258 0.39635 0.33133 
p-value 1.87e-06 0.00022 0.04986 0.7992 7.667e-05 0.00110 

2009 r 0.47130 0.3833 0.4617 0.22703 0.4274 0.36629 
p-value 2.028e-07 3.577e-05 0.1791 0.5282 1.728e-05 0.00028 

23 Jun 2010 r 0.3510 0.4142 0.369015 0.41781 0.30535 0.37447 
p-value 0.00016 6.847e-06 0.294 0.2296 0.0027 0.00020 

8 Aug 2010 r 0.34663 0.36738 0.16042 0.20822 0.30930 0.34632 
p-value 0.0002 7.876e-05 0.658 0.5637 0.00241 0.00062 

2010 r 0.3562 0.3973 0.28730 0.329505 0.3138 0.36629 
p-value 0.0001 1.725e-05 0.4209 0.3525 0.00205 0.00028 

2007-2010 r 0.4513 0.4425     
p-value 7.491e-07 1.3e-06     

 



A number of studies in biomass estimation using ALOS/PALSAR have concluded that the HV polarization showed 
higher correlation with AGB compare to the HH polarization (Englhart et al., 2011, Mitchard et al., 2011, Tian et 
al., 2012). The correlation result for scene 519-560 is having a good agreement with previous mentioned studies, as 
can be seen in Table 2. However, in case of scene 518-560 (see Table 1), it is found that the correlation strength 
between HH and HV is not very much different or even slightly less for HV polarization. This implies that both 
polarizations are complementary to each other and their combination can be useful for more accurate biomass 
estimation. 
 
The correlations in multi-temporal data (2007-2010) are being compared to the mono-temporal data in the year 
2010 when the field data were collected. As can be seen from Table 1 and Table 2, the correlations in single images 
are weaker compare to the multi-temporal approach in both HH and HV polarizations.  
 
The average images of the whole time span data (2007-2010) were then used for developing biomass model. For 
scene 518-560, the correlation for HH and HV polarization is highly significant with r = 0.45 and r = 0.44, 
respectively. For scene 519-560, the correlation is also highly significant with r value for the HH polarization (r = 
0.39) is weaker compare to the HV polarization (r = 0.43). 
 
Table 2: Pearson’s product moment correlation between AGB and backscatter coefficient for scene 519-560 
 

  Scene 519-560 
  All classes Sal TMH 
  HH HV HH HV HH HV 

17 Aug 2007 r 0.38361 0.421073 0.46753 0.44146 0.34598 0.40816 
p-value 3.239e-05 4.187e-06 0.00918 0.146 0.00178 0.000188 

2 Oct 2007 r 0.3877 0.46273 0.38287 0.53833 0.36142 0.44396 
p-value 2.616e-05 3.165e-07 0.03677 0.00214 0.0010 4.161e-05 

2007 r 0.3998 0.4530 0.4427 0.5285 0.36635 0.4332 
p-value 1.378e-05 5.943e-07 0.01429 0.00267 0.000898 6.644e-05 

19 May 2008 r 0.4073 0.43550 0.30775 0.33458 0.42097 0.46189 
p-value 9.112e-06 1.779-06 0.09803 0.07073 0.00011 1.828e-05 

2008 r 0.4073 0.43550 0.30775 0.33458 0.42097 0.46189 
p-value 9.112e-06 1.779-06 0.09803 0.07073 0.00011 1.828e-05 

22 Aug 2009 r 0.3023 0.3546 0.13033 0.26664 0.35203 0.36385 
p-value 0.0012 0.0001 0.4924 0.1544 0.0014 0.00098 

2009 r 0.3023 0.3546 0.13033 0.26664 0.35203 0.36385 
p-value 0.0012 0.0001 0.4924 0.1544 0.0014 0.00098 

10 Jul 2010 r 0.2731 0.37501 0.19887 0.08777 0.33932 0.41322 
p-value 0.0037 5.007e-05 0.2921 0.6447 0.002219 0.000153 

25 Aug 2010 r 0.3569 0.41876 0.16413 0.34811 0.39610 0.43846 
p-value 0.0001 4.783e-06 0.3861 0.5941 0.00030 5.307e-05 

2010 r 0.3362 0.4158 0.02043 0.24932 0.3918 0.44344 
p-value 0.0003 5.648e-06 0.9147 0.184 0.00035 4.259e-05 

2007 - 2010 r 0.3946 0.4320     
p-value 1.819e-05 2.19e-06     

 
Non-linier biomass regression model for HH and HV polarization are shown in Figure 3a and Figure 3b, 
respectively. As it can be seen from the graphic, the model accuracy is limit by the saturation level in around 100-
150 t/ha. The saturation point is the value of AGB after which an increase in AGB cannot be observed as an 
increase in the radar backscatter. Above this limit, the estimation of biomass is not accurate enough, however it can 
be used to map the spatial distribution of high biomass. The best-fit model for HH and HV polarization are: 
 
σ° =  a + b*ln(AGB) + c*ln(x)2           (2) 
 
where σ° is the radar backscatter coefficient, AGB is the above ground biomass calculated from the field forest 
inventory data, and a,b,c are the variables which are different for each polarization (see Table 3). 
  



 
(a)   (b) 

Figure 3: The best-fit biomass model for (a) HH polarization; (b) HV polarization 
 
The r2 value shows that the regression line is not perfectly fit the data. The relatively low value is probably due to 
the complex structure of the forest and topographic factors in the study area. The terrain correction method may not 
be good enough to remove the effects of topography or slope in the images, resulting in poor relationships between 
AGB and radar backscatter. Other factors that may affect the AGB estimation performance, such as atmospheric 
conditions, mixed pixels, insufficient sample data, geometric registration errors, suitable extracted remote sensing 
variables, and the selected algorithms (Lu, 2006). 
 
Table 3: Coefficients for radar biomass regression models 
 
Polarization a b c r2 
HH -11.905 1.029 -2.8E-02 0.296 
HV -17.875 0.737 2.672 0.249 
 
Figure 4 shows the biomass map of Western Tiger Landscape Nepal in 2010 which was derived from the biomass 
model of multi-temporal HV polarization. As expected, the overall trends show the spatial distribution of high 
biomass value in the forest area (gradation of green color) and low biomass in the non-forest area (gradation of red 
color). 
 

 
Figure 4: Biomass map of the Western Tiger Landscape Nepal in 2010 

 
 
CONCLUSIONS & RECOMMENDATIONS 
 
In the areas where forest stand structures, terrain or topographic characteristics, and environmental conditions are 
complex, biomass estimation is a challenging task. While the AGB estimation using traditional field measurement 
techniques have constraints in providing the spatial distribution of biomass in large areas and difficult terrain, 
remote sensing techniques greatly increase the usefulness in such conditions. However, the signals from remote-



sensing instruments tend to saturate at high biomass level, no exception with the radar backscatter even though 
much higher biomass level can be achieved compared to the optical remote sensing. This study shows saturation 
level of L-band ALOS/PALSAR at 100-150 tons/ha.  
 
In general, the multi-temporal data provides a stronger correlation with the AGB calculated from the field data 
compare to the mono-temporal approach. The multi-temporal approach compensates variable and extreme climatic 
conditions of a single radar image which may affect the radar signal interaction with the forest structure variables 
(Englhart et al., 2011).  
 
The biomass model successfully produced a biomass map that shows the spatial distribution of forest biomass in a 
wide range of biomass values. However, the accuracy was relatively low and may not be in agreement with many 
other researches. Complex terrain and forest structures in the study area may lead to a poor correlation between 
radar backscatter and AGB calculated from the field inventory. More efforts should be made to remove the terrain 
effects with an appropriate model-based slope correction. Investigations using radar backscatter derived variables 
such as texture and combination of dual polarizations ratios may improve the accuracy of the model. Integration 
with other remote sensing data such as LiDAR (Light Detection and Ranging) and very high resolution images may 
be able to overcome the limitations of each data and complement each other.  
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