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Abstract: Hyperspectral imaging has become one of the most promising and emerging technologies in remote 
sensing. It has made great advances in recent years by the introduction of new techniques, to take advantage of the 
vast amount of information contained within hyperspectral images (HSIs). However, the increase in the information 
comes at the expense of higher computational cost in processing the data. In this work, we measure the target 
detection accuracy on the Tucker decomposed hyperspectral images. A comparison of PCA reduced and Tucker 
reduced data is also drawn. The effectiveness of target detection on Tucker decomposed data is explicitly shown on 
AisaEagle dataset (Wadstromer et al., 2010) using RX detector. 

 
1. INTRODUCTION  
 
Hyperspectral imaging sensors measure the radiance of objects among a large number of continuous wavelength 
bands and generate hyperspectral images (HSI) resulting in more information gathered compared to multispectral 
imaging. But the huge amount of data acquired increases the computational cost of processing and might also 
decrease the target detection accuracy (Landgrebe, 2002). Thus, dimensionality reduction becomes a crucial step. 

A number of methods have been suggested for this purpose, namely Principal Component Analysis (PCA) 
(Farrell and Mersereau, 2005) and Independent Component Analysis (ICA). PCA maximizes the amount of data 
variance by orthogonal projection and is the simplest and most common approach for dimension reduction. ICA is a 
higher-order method that seeks linear projections which are nearly statistically independent but not necessarily 
orthogonal to each other. However, both methods neglect the combined spatial and spectral correlation of the 
dataset. In contrast, tensor decomposition simultaneously takes into account the spatial and the spectral correlation 
of HSIs (Renard and Bourennane, 2008). Tucker decomposition is one of the most popular tensor decompositions. 
In Karami et al., (2011a) and Karami et al., (2012b) the authors have shown the effectiveness of Tucker 
decomposition for compression and noise reduction in HSIs.  

In this work, we explore the effectiveness of Tucker decomposition of HSIs in the context of target detection. 
We also compare the chosen decomposition approach with other dimensionality reduction techniques like PCA. A 
large number of hyperspectral detection algorithms have been developed (Manolakis and G. Shaw, 2002) which can 
be broadly classified into two types: one is based on knowledge of the target’s signature while the other locates 
target by elimination of the background, more commonly known as anomaly detection (Stein et al., 2002). Three 
anomaly detection algorithms, namely RXD, RX-UTD (Ashton and Schaum, 1998) and NSW-DW (Liu and Chang, 
2004), were implemented on the dimension reduced dataset.  
 
2. DIMENSION REDUCTION-TUCKER DECOMPOSITION 
 
Hyperspectral data has two types of redundancies: spatial and spectral redundancies. Hence dimension reduction is 
an important step to reduce data volume especially for on-board processing, maintaining detection accuracy. 
However, PCA is applied on vectorized images, thereof, the spatial information is lost. Hyperspectral image is a 
three dimensional matrix known as a tensor array. Tucker decomposition allows direct principal component 
analysis on multidimensional array (Tucker, 1966). In the context of hyperspectral imagery, this decomposition 
performs joint spatial and spectral processing. 
 

Tucker decomposition of an hyperspectral image  ∈ ℝ  ×  ×   can be expressed as, 
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Here,  ( ) ∈ ℝ ×  ,  ( ) ∈ ℝ ×  , and  ( ) ∈ ℝ ×   are the factor matrices (which are usually orthogonal) and 
can be viewed as the principle components in each mode. The tensor  ∈ ℝ  ×  ×   is called the core tensor and 
its elements show the degree of interaction among different components.  

The objective is to decompose the original tensor   of size   ×   ×    into a core tensor   of size   ×   ×   and three subspaces  ( ),  ( ),  ( ) by solving the minimization problem using alternate least square algorithm 
(De Lathauwer et al., 2000), 
 min , ( )   −  ×  ( ) ×  ( ) ×  ( )    ,   (2) 

subject to  ∈ ℝ 1, 2, 3,  ( ) ∈ ℝ  ×   and columnwise orthogonal for  = 1,2,3. 
3. TARGET DETECTION 
 

Anomaly detection is chosen frequently as the preferred detection approach since no prior knowledge of the target’s 
signature is needed. We compare the performance of three anomaly detectors namely RXD, UTD, RX-UTD and 
NSW using data that was reduced in dimensionality using Tucker decomposition.  

A generalized likelihood ratio test is the foundation for anomaly detection algorithms. Thresholding the 
likelihood ratio provides the hypothesis test that satisfies various optimality criteria including: maximum 
probability of detection for a given probability of false alarm. The key assumptions of RXD are that the background 
and the target can be modeled by multivariate Gaussian distribution with the same spectral covariance, i.e. it is 
assumed that the background mean is the global mean while the target mean is unknown (Manolakis et al., 2009 
and Chang and Chiang, 2002). The competitive hypotheses are:  

 
    :  ~  (  , ∑ )    ( 3) 

   :  ~  (  , ∑ )     (4) 

where   ,    denote the mean vectors of the background and the target, respectively: ∑ ,  ∑   denote the  ×   
covariance matrices of the background and the target, respectively. The maximum likelihood estimate of   , 
denoted as   , under the    hypothesis is given by   =  . 

The RX detector is a constant false alarm rate (CFAR) detector for anomaly detection proposed by Reed-Xiaoli 
(Reed and Yu, 1990). Targets whose signatures are distinct from their surroundings with no a-priori knowledge are 
detected. This is done by calculating the Mahalanobis Distance by considering the spectral covariance matrix of the 
image and then detecting anomalies through thresholding. Suppose that L is the number of spectral bands and    is 
an L × 1-column pixel vector in a hyperspectral image and the image contains N pixels. Then the RXD implements 
a filter specified by, 
     (  ) = (  −  )   ×   (  −  ) (5) 

   × = ∑ (  −     )(  −  ) , (6) 

where   is the global sample mean and   ×  is the sample covariance matrix of the image.     (  ) is the 
Mahalanobis distance.  

The images generated by RXD are usually grayscale, where brighter gray levels are considered to be anomalous 
(target) pixels. As background pixels are assumed to be homogenous, target pixels should behave as outliers, falling 
in the right tail of the image’s grayscale distribution (Chang and Chiang, 2002). The targets are differentiated from 
the background by automatic thresholding. A histogram plot of the image is used to define the rejection probability 
for a given gray scale value  , 
 
     ( ) =    (    (  ) <  ),  (7) 

Then, a threshold α  for detecting the anomalies is determined by setting a confidence coefficient γ such that P(α ) = γ. If     (  ) > α , then    is detected as anomaly. In this work, an estimation of the number of target 
pixels is assumed to be known, and set to 1 − γ= #                 #                      . The same thresholding method is also applied 
to the other detection algorithms RXD-UTD and NSW evaluated in this paper. In RXD-UTD,  Ashton and Schaum, 
(1998) suggest that background subtraction could enhance the RXD detection performance, which indicates that 
incorporating UTD into RXD may remove the background and therefore improve performance as well. The idea in 
NSW-DW (Liu and Chang, 2004) is to use a nested three windows where the inner and middle windows are to 



extract targets with smallest size and largest size respectively, while the outer window is to describe the 
background. 

  
4. EXPERIMENTS AND RESULTS 
 
The hyperspectral dataset used for validation in this study was provided by the Swedish Defence Research Institute 
(FOI) (Wadstromer et al., 2010). The spectral resolution is about 10nm and covers the visual and near infrared 
range from 0.39  m to 0.96  m with 60 spectral bands. The scene shows an edge of a wood, an open field, and 
rough open terrain, with six target military and civilian vehicles placed at various locations within the image.  
 

Fig. 2 shows the results of dimension reduction using PCA and Tucker on the dataset. A comparison of the 
performance is objectively measured by the target detection accuracy. Anomaly detection was performed using a 
RX detector. Initially, the optimum number of spatial ranks required by Tucker was established by carrying out 
various combinations of the spatial ranks K1 and K2. The results in Fig. 3 show that K1 = K2 =100 yielded the best 
detection accuracy. The number of spectral components corresponding to the best detection accuracy for PCA and 
Tucker is 30. Therefore RXD, is applied to both PCA and Tucker containing the first 30 spectral principal 
components. It can be observed that the accuracy of detection is not affected by the significant reduction in the 
spectral components. 
 

A comparison of the detection accuracy measurement is done on raw images and images after dimension 
reduction using PCA and Tucker. The detection is a two-class prediction problem: the pixels in an image are either 
labeled as target (positive- ) or background (negative- ). Hence, there are four possible outcomes from a binary 
detector: True Positive (TP) - if the outcome from a prediction is   and the actual value is also  ; False Positive 
(FP) - if the outcome from a prediction is  , while the actual value is instead  ; True Negative (TN) - if the 
outcome from a prediction is   and the actual value is also  ; False Negative (FN) - if the outcome from a 
prediction is  , while the actual value is instead  . The four outcomes can be formulated in a 2 × 2 confusion 
matrix: 

 

and four measurement results can be attained for this confusion matrix given as recall rate TP/(TP+FN), precision 

TP/(TP+FP), accuracy  (TP+TN)/(P+N) and the false alarm rate FP/(FP+TN). 
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Figure 2: Dimension reduction results from Tucker decomposition (left panels) and PCA (right panels). The first 
five spectral components are shown here (AisaEAGLE) 

A comparison of different target detection algorithms is done as shown in Table 1. Of the three algorithms 
NSW-DW (Liu and Chang 2004), is the most time consuming. Since ground truth is available, comparison on the 
recall rate, precision, accuracy and false alarm rate is carried out and results are as indicated in Table 1. Further, 
Figure  shows the best detected image by RXD, four vehicles could be correctly identified (circled in the image), 
while the detection result by NSW is far from the ground truth. The reason for NSW-DW’s underperformance is 
that the window size needs to be specified by estimating the target’s size, however, the targets’ dimensions vary and 
they are not strictly square.  



 
 

 

Figure 3. Impact of spatial ranks as a function of the number of spectral components for Tucker decomposition 
 
 
 

Table 1. Comparison of the performance of different target detection algorithms  

Algorithm Recall Rate Precision Accuracy False Alarm Targets Time (s) 

RXD 0.3791 0.3333 0.9976 0.0013 4 2.15 

RX-UTD 0.3725 0.3276 0.9976 0.0013 4 2.37 

NSW 0.1242 0.1092 0.9967 0.0018 1 216.51 

 
 
The RX detection algorithm was applied to both PCA and Tucker containing the first 30 spectral bands and their 

detection accuracy was compared against RXD applied on to the original hyperspectral image having 60 spectral 
bands. Results in Table 2 indicate that both Tucker and PCA perform better than the original image although the 
number of bands utilized was reduced by half. Tucker decomposed images are found to have better detection 
accuracy when compared to PCA at the expense of increased computational complexity. The redundancies 
contained within the hyperspectral image have been compressed utilizing dimension reduction algorithms without 
any loss of information. But the reduction in the spectral bands does not necessary result in a reduction in the 
computational complexity, as indicated by the time required for individual process the table. This is due to the high 
computational cost associated with the dimension reduction algorithm, especially with the case of Tucker 
decomposition. The reason for the detection of four targets out of six is because for camouflaged vehicles visual 
bands fail to yield much information to distinguish the target from its background. 
 

 

 



 

Figure 4. Vehicle detection results by different algorithms: Up left-RXD; up right-RXD-UTD; bottom-NSW-DW 

 
 

Table 2: Comparison of vehicle detection results between raw images and images after dimension reduction 

Image Recall Rate Precision Accuracy False Alarm Targets Time(s) 

Raw 0.3791 0.3333 0.9976 0.0013 4 2.15 

PCA (30 bands) 0.3954 0.3477 0.9976 0.0013 4 2.28 

Tucker (30 bands) 0.4346 0.3822 0.9978 0.0012 4 18.56 

 
 
5. CONCLUSIONS 
 

In this work, we have shown the impact of dimension reduction using Tucker decomposition on target detection. 
A comparison of target detection accuracy was made on images whose dimensions were reduced using Tucker and 
PCA. Results indicate that compared to PCA, Tucker decomposition leads to better detection at the expense of time. 
We have also shown that out of the three detection algorithms employed, namely RXD, RXD-UTD and NSW, 



RXD performs the best in terms of accuracy and computation time. In future, we plan to tackle the issue of 
computational complexity so as to enable a real-time implementation in an embedded platform.  
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