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ABSTRACT 
Soil moisture is an important factor as it has tremendous effects on agriculture production, the environment and 
climate. For the soil moisture estimation, traditionally, direct soil sampling has been done, but this is labor intensive, 
very slow, and may be very expensive, hence for large regions Remote Sensing technology is a feasible alternative. 
The Advanced Microwave Scanning Radiometer (AMSR-E) provides global soil moisture  product which has a 
spatial resolution of 25km but  the spatial resolution is not good enough to satisfy the demand for agricultural 
planning or drought monitoring hence it is necessary to find a method to retrieve Soil Moisture (SM) with higher 
spatial resolution.  In this study, AMSR-E soil moisture in combination with Normalized Multi-Band Drought 
Index (NMDI) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery is used to 
generate higher spatial resolution SM in the Central American region for the 2010 dry season.  The combination of 
the advantages of both, high spatial resolution provided by NMDI and physical units of AMSR-E soil moisture 
products are used to derive a model which can estimate the SM with higher spatial resolution. The model for SM 
estimation is validated using checkpoints and the validation results reveal satisfactory results. The estimations can 
serve as a tool for drought monitoring, prevention and mitigation actions especially in regions, such as Pacific 
region, which are highly vulnerable to drought.  

1. INTRODUCTION
Soil Moisture (SM) is one of the most important variables relative to land surface climatology, hydrology, and 
ecology and its  importance has been extensively acknowledged as a significant variable in many environmental 
studies (Walker 1999).  The mapping of  SM can help to accurately monitor and estimate spatial and temporal 
variability of soil moisture (L. Wang et al. 2009) and the information derived can be used as an instrument for the 
preparation of humanitarian aid to drought affected areas and to assist food security programs. SM mapping can be 
developed using direct soil sampling in situ, but the use of  this method is complex, labor intensive, slow, and 
therefore very expensive (Hignet et al. 2008). In contrast with the preceding statement, remote sensing techniques 
for SM mapping are promising because of their spatially distributed information and their low cost. Remote 
Sensing based research for SM estimation and mapping has been studied since the 1970�s (Musick & Pelletier 1988; 
Engman 1991; Gruhier et al. 2009; Verstraeten et al. 2006; L. Wang & Qu 2009; Kravchenko & Bullock 1999). It 
has been proved that Microwave remote sensing at low frequencies is one of the most efficient approaches to 
characterize soil moisture from space, with low atmospheric contribution (Gruhier et al. 2009; Y. H. Kerr et al. 2001; 
E. G. Njoku et al. 2003). The most common, although very costly,  imaging active microwave configuration is 
the synthetic aperture radar (SAR) (Moran et al. 2004). Also, great progress has been made in mapping regional soil 
moisture with passive microwave sensors, and one of the available satellite-based passive microwave sensor 
imagery is the Advanced Microwave Scanning Radiometer (AMSR-E) which was successfully deployed on the 
NASA Aqua platform in 2003 (Njoku et al. 2003), but the use of passive microwave measurements for soil 
moisture mapping is limited because the spatial resolution is inherently coarse. This disadvantage can be covered 
with the use of optical images, but, despite the multitude optical sensors available in orbit, it is only recently when 
soil moisture conditions and drought has been assessed with the use of visible, near-infrared (NIR), shortwave 
infrared (SWIR) from MODIS satellite images (L. Wang et al. 2006; L. Wang & Qu 2007; L. Wang & Qu 2009; H. 
Zhang et al. 2009).  The use of optical image, also has disadvantages, among them is that it has limited ability to 
penetrate clouds and vegetation canopy (Musick & Pelletier 1988).  The diverse remote sensing methods for SM 
mapping have their advantages and disadvantages therefore optical remote sensing and microwave remote sensing 
observations of surface soil moisture can complement each other and produce a higher spatial resolution SM 
mapping. In this study, the MODIS surface reflectance data images are used to estimate the Normalized Multiband 
Drought Index (NMDI) proposed by using three wavelengths, one in the NIR centered approximately at 0.86 µm, 
and two in the SWIR centered at 1.64 µm and 2.13 µm, respectively (L. Wang & Qu 2007). The potential of NMDI 



has been  deep-rooted by its application in different research topics such as drought monitoring in Henan province 
of China (H. Zhang et al. 2009). The results show that there is a significant correlation between NMDI and soil 
moisture.   In this study, MODIS surface reflectance data to derive NMDI, MODIS Leaf Area Index (LAI) 
product and AMSR-E soil moisture products are used. LAI MODIS data is used for eliminating the dense 
vegetation areas, because NMDI stops responding to soil moisture change gradually as LAI increases (L. Wang & 
Qu 2007). Also, the high spatial resolution NMDI and the low spatial resolution AMSR-E soil moisture data is used 
to create a model which can generate a higher spatial resolution SM mapping. This can serve as a tool for drought 
monitoring, prevention and mitigation actions, especially in highly vulnerable regions to drought such as the Pacific 
region of Central America. 

2. STUDY AREA 
The study area selected is Central American region, formed by Guatemala, El Salvador, Honduras, Nicaragua, and 
Belize (figure 1). This study area in particular has an area of: 394,881 km² in total, including the 5 countries. 
 

Figure 1. Study area which includes five countries of the Central American Region: Nicaragua, Honduras, El 
Salvador, Guatemala and Belize.  
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The rainfall in Central America is variable, depending on the wind direction and the position of the tropical and 
intertropical convergence zones. In the Central American region, SM presents strong variability caused by the 
volcanic origin of the terrain, and the climatic differences of the Pacific seasonal rains and Caribbean coasts 
year-round rains (Georgakakus 2001). In the region, there is an elevated mountain system in the central part of 
Honduras, Guatemala and Nicaragua which creates a climatological contrast originating a very humid Caribbean 
region which is subject to floods, and a Pacific region with a long dry season that provokes an intense drought in 
the most populated regions in Central America (Birkel 2005).  

3. REMOTE SENSING DATA 
The data used in this study includes the MODIS multi-spectral image for NMDI estimation, MODIS LAI/FPAR 
product and the AMSR-E soil moisture data. The image acquisition period is the dry season of the year 2010 which 
ranges from January to April. The MODIS product used is MOD09A1 which provides MODIS band 1-7 surface 
reflectance at 500 m resolution. It is used because each product pixel contains the best possible L2G observation 
during an 8-day period (Justice et al. 2002). NMDI is estimated using the NIR band 2 (0.86 µm) and two SWIR 
bands (band 6, 1.64 m and 7, 2.13 m). The AMSR-E instrument provides sea surface temperature, sea ice 
concentration, snow water equivalent, soil moisture, surface wetness, atmospheric cloud water, and water vapor 
(JAXA 2006). The AMSR-E L3 soil moisture is the product used in this study. It is also called AE_Land3 and has a 
daily temporal resolution. LAI data is also required for eliminating areas with dense vegetation. The product used in 
this study is the MODIS LAI/FPAR which is produced at 1 km spatial resolution (MOD15A1) and composited over 
an 8-day period based on the maximum FPAR value.

4. METHODS
In this study, NMDI is calculated for each date of the MODIS images collected for the 2010 dry season. MODIS 

LAI/FPAR (Leaf Area Index) is used as the vegetation cover reference to separate high density vegetation areas 
from low density vegetation areas. NMDI and AMSR-E soil moisture data sets are used for lineal approximation 
analysis to estimate SM with 1 km spatial resolution. Validation of the SM estimated is carried out using 10% 



check points selected initially from the AMSR-E soil moisture data, points which are not used for lineal 
approximation analysis. The methodology flowchart is illustrated in figure 2.  
 

 
Figure 2. Analytical framework of the study 

4.1 Data pre-processing 
The raw data of MODIS images use the Sinusoidal projection (Equal Area Projection) and it is converted to UTM 
coordinate system using the MODIS Reprojection Tool (MRT). The MODIS surface reflectance images have 500 
meters spatial resolution hence they are resampled to match the spatial extent of the MODIS LAI/FPAR product 
which has a spatial resolution of 1 km. Using vector data of the country boundaries a water mask is applied, and 
finally clouds are removed. Both MODIS datasets have a 1 km spatial resolution, for the subsequent calculations 
and analysis, this datasets need to match the spatial extent of the of AMSR-E soil moisture data which is 25 km. To 
resample from 1 km to 25 km one main criterion is considered: a minimum of 80% of the MODIS data pixels 
which conform one equivalent AMSR-E soil moisture data pixel of 25 km resolution should correspond to same 
class. If not, this pixel is not considered.  NMDI is calculated for 1 km spatial resolution and afterwards, NMDI 
and LAI/FPAR are resampled to 25 km for modeling. Raw data of the global soil moisture products of AMSR-E 
has an EASE-Grid (Equal-Area Scalable Earth Grid) projection and coordinate system. The AMSR-E soil moisture 
image of the study area is then converted to UTM projection coordinate system. AMSR-E provides data on a daily 
basis, and for the purpose of matching the temporal resolution of MODIS datasets, an 8 day average is used.  

4.2 NMDI  
In this study, NMDI is used for the soil moisture assessment. NMDI uses the 0.86 m channel as the reference 
instead of using a single liquid water absorption channel; however, it uses the difference between two liquid water 
absorption channels centered at 1.64 m and 2.13 m as the soil and vegetation moisture sensitive band.  NMDI 
is defined as:
 

 
 
Where is Band 2,   Band 6 and Band 7 of MODIS satellite image. NMDI is used for 

  NMDI=
R0.86 m- R1.64 m-R2.13 m

R0.86 m+ R1.64 m-R2.13 m
 (1) 



assessm M (L. Wang & Qu 007). Numerous rch has applied the index to test its sensitivity to monitor 
drought, soil moisture, vegetation moisture, forest fire risk and to detect forest fires  (L. Wang et al. 2009; H. 
Zhang et al. 2009; L. Wang et al. 2008) and from the results the index has proved an enhanced sensitivity compared 
with other indexes and that it is a suitable index to assess soil moisture and vegetation water content.  
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The 25 km resolution NMDI images,  AMSR-E soil moisture data and LAI/FPAR data are plotte
sensitivity to vegetation change as shown in Figure 3a and 3b.  Horizontal axis corresponds to the AMSR-E soil 
moisture data, the vertical axis corresponds to NMDI and the color of each point represents the different LAI values. 
As seen in figure 3a, LAI data points in the scatter plot distribution change gradually from low to high.  Linear 
regression analysis is performed and a regression line plotted for each LAI interval (figure 3b). Line colors 
represent different categories of LAI and when the LAI values are low, the NMDI, AMSR-E soil moisture data has 
a higher sensitivity hence the slope of the regression line for the first category is the largest. The slope gradually 
decreases as the LAI increases and the regression line slope gradually approaches zero. This indicates that the 
NMDI gradually reduces its sensitivity on the AMSR-E soil moisture data when LAI is increased, an assumption 
that matches the simulation results in L. Wang & Qu 2007 study.
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4.4.1 Linear regression a
NMDI and AMSR-E soil moistur
these two variables by fitting a linear equation to the observed data. AMSR-E soil moisture products, which are 
generated by microwave remote sensing technology, have a quantitative physical unit but a very low spatial 
resolution and NMDI has high space resolution which is calculated using optical images, but does not have 
quantitative physical units, therefore, in this study the combination of the advantages of both, high spatial resolution 
provided by NMDI and physical units of AMSR-E soil moisture products provide the SM estimation with higher 
spatial resolution. The coefficients obtained from the linear regression analysis are derived from 90% of the original 
dataset leaving the remaining 10% as check points for validation. Once the regression model has been fitted for the 
group of data, examination of the residuals (the deviations from the fitted line to the observed values) is performed. 
This allows the validation of the assumption that a linear relationship exists.   

4.4.2 Validation 
The validation of t
from the original dataset as checkpoints. These 10% data checkpoints are not used for the linear regression analysis 
performed previously. The SM estimation model function is used to estimate SM for the 10% dataset. The results of 
this SM estimation are evaluated by RMSE and examination of the residuals. This allows the validation of the 
model.  

5. RESU
The SM is calculated using model acqu
for the dry season of the year 2010. The model obtained was used to estimate the SM at 1 km spatial resolution 
(figure 4a). The model generated a fairly consistent SM for the entire region and it visually shows a similar spatial 
variability when compared to the true values of the AMSR-E soil moisture data (figure 4b). It can also be noticed 
that in the large urban areas, SM estimated from model is very low, and there is a clear contrast between cities and 



surrounding areas, characteristic that cannot be observed in the AMSR-E soil moisture true data. This is particularly 
important to notice because it reveals the level of detail that the SM estimation can provide, confirming visually the 
effectivity of the model.  This similarity in visual spatial variability of SM and AMSR-E as well as other 
characteristics observed,  require quantitative validation.  

 
Figure 4.  n with 1 Km spatial resolution on 22 March 2010. The area within the black 

boxes is the location of  urban areas. (b) AMSR-E soil moisture with 25 km spatial resolution  
 

(a) SM estimatio

In this e the study for validation, 10%  of the points are selected randomly to be used as the checkpoints, whil
remaining 90% of the data are used for the mode estimation.  An average RMSE of 10.54 is obtained, for the dry 
season of 2010. In table 1 RMSE of all dates  for the dry season of the year 2010 are shown. It illustrates that the 
RMSE is consistently low for all dates, proving that the SM estimation model performance is satisfactory.    
 

Table 1. Validation of SM estimation model using 10% of total data for check points 

(10% of data) 
D

estimated results (10% of data) 
D

estimated results  
Check points RMSE of SM Check points RMSE of SM 

ate acquisition ate acquisition
01 January 9.54 06 March 12.46 
09 January 11.97 14 March 11.29 
17 January 8.44 10.30 22 March 
25 January 9.89 30 March 9.98 
02   February 8.98 07 April 11.09 
10 February 7.78 15 April 11.26 
18   February 12.50 23 April 10.56 
26 February 11.90 Average 10.53 

The SM estimation atial resolut  all dates is n the figure onths in this with 1 km sp ion for illustrated i 5. The driest m
region fluctuate between January and April hence this period is selected for analysis. The maps are illustrated for 
every 8 days, startin ginning of J  until the end hich marks rt of the rainy season. 
The time series of SM images in 2010 reflects clearly the development of the dry season in the region. From the 
spatial variability o mation in th ion it is obse ry strong di  of SM between the 
Atlantic and central area and the Pacific coastal area, which coincides with the known climatic differences that 
characterizes both r
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Figure 9. SM estimation from model at 1 km spatial resolution for the dry season of the year 2010 in the 
Central American region. 



6. CONCLUSIONS 
The main objective of this study was to generate a hig atial resolution SM estimation and mapping using 

 AMSR-E soil moisture datasets for every 8 days.  NMDI was estimated using MODIS 
 bands 2, 6 and 7 and have a 500 meters resolution (resampled to 1 km). LAI/FPAR data 
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have a 1 km spatial resolution and was used to separate highly dense vegetation areas.  AMSR-E data was 
acquired and averaged for every 8 days. Linear approximation was developed to make use of the advantages of  
NMDI and AMSR-E soil moisture datasets,  coefficients calculated and the function acquired, applied to obtain 
SM at 1 km spatial resolution. Validation of the model using 10% checkpoints revealed satisfactory SM estimation 
results. The average RMSE obtained for 2010 dry season dates is 10.53 mg/cm³ , the lowest RMSE was 7.78 
mg/cm³ obtained in February 10th. The results obtained indicate a clear differentiation between the drought 
conditions in the Pacific region compared to Atlantic and Central region. The SM content in Pacific coastal area 
reveals strong drought conditions during the whole dry season, which can directly affect the sustainability of 
agriculture and the food security in the region. The results from this research can be used as an instrument for 
agriculture planning and can also be a key variable to develop an early warning system in regions which have a 
high vulnerability to drought.   
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