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ABSTRACT: In this paper, we present matching of multitemporal optical and SAR (Synthetic Aperture Radar) 
images of various spatial resolutions and naturally different bands. The aims of such matching could be various, like 
image co-registration, needed for various applications, where a combination of SAR and optical images is needed, 
as. e.g. in disaster and hazard monitoring and mapping. Here, the application idea is to transfer GCPs (Ground 
Control Points) from SAR to optical images. SAR images, at least with the newest satellite platforms, can be 
georeferenced without the use of GCPs down to an accuracy of few dm, while optical sensors, especially high-
resolution ones, often need GCPs to achieve the highest possible accuracy.  The SAR images are assumed to be 
orthorectified and a related DSM (Digital Surface Model) exists. Thus, through matching, we can automatically 
determine planimetric coordinates of GCPs for optical images, which are needed for an accurate optical image 
georeferencing, while the height is interpolated from the given DSM. However, matching SAR and optical images is 
so difficult that the great majority of matching results are wrong (only 1 out of about 1,000 match points is correct). 
In these investigations, we used LSM (Least Squares Matching), as it is very accurate, but most importantly it can 
provide different statistics, which can be used for matching error detection and elimination. Thus, we developed 
novel methods for an LSM matching quality characterization and error detection.  The same methods, with some 
minor modifications, can be used for quality characterization for various other matching methods, like cross-
correlation, or even feature-based matching. For matching of SAR and optical images, very variable test datasets 
were used and the results are based on visual inspection of the match-points, very promising, with poorer 
performance for low spatial resolution images of about 25 m GSD (Ground Sampling Distance). The same matching 
error detection method has been used for a much more important application, the automatic DSM generation via 
image matching. Preliminary results show that performing such tests after matching lead to a much more accurate 
DSM (error standard deviation decreased from 9.3 m to 1.3m from no error detection to the method proposed 
below). They also provide an accuracy measure for each DSM point, which could be used for various purposes, 
among them DSM fusion. 
 
1. INTRODUCTION AND AIMS 
 
The primary aim of this work was initially to do automatic point transfer via image matching between SAR and 
optical images. However, it was shown that our methods had a much wider significance, namely the automatic error 
detection in matching of optical images for automated DSM generation, focussing here on use of Least Squares 
Matching. In our concrete application, the SAR images are orthorectified and have an underlying DSM. SAR 
orthorectification can be performed without GCPs, with few exceptions (especially for older sensors). The point 
transfer then provides GCPs for optical image georeferencing, avoiding the costly and difficult GCP acquisition by 
other means. About 20-40 (usually well-distributed) points are needed, half of them as GCPs, the rest as check 
points. We aim at  matching (point transfer) accuracy of about 0.5-2 pixels. The same procedure is needed for other 
purposes, e.g. co-registration of SAR and optical images (e.g. in fast response applications, as post-hazard 
mapping), where optical and SAR images need to be fused, whereby optical images provide better interpretability 
and usually resolution, while SAR weather and day/night independence. SAR and optical images are spectrally and 
geometrically very different and have multitemporal and other (e.g. noise characteristics) differences, making 
matching extremely challenging. Only a very small % of the matches (0.01 to 1%) is correct. Thus, we need to 
derive quality values for each match-point and based on that do error detection and keep only the N best points 
needed. This finally turned out to be the most important and challenging part of the work, and not the matching 
itself. It also has a much larger significance, as the same quality characterization and error detection methods can be 
used in matching of optical images for automatic DSM generation, or matching of SAR images for other purposes, 
using the same matching method as here, and with adaptations also for other matching methods, e.g. using cross-
correlation. This can solve the problem of deriving quality values for each match-point, which is essential not only 
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for error detection and reliable automated processing, but also other applications like data (e.g. DSM) fusion. 
Previous research work performed on the paper topic is quite limited with major work given by Christophe et al. 
(2008), Dare and Dowman (2001), Goncalves and Dowman (2002) and Reinartz et al. (2001), while we do not 
know of any commercial software providing this functionality, at least reliably.  
 
2. INPUT DATA 
 
The 15 x 15 km2 test area, close to the city of Thun, Switzerland, had substantial elevation differences and many 
land-cover classes (see Figure 1). 
 

 

 
Figure 1: Common test area of SAR and optical images. 

 
The area was imaged by five SAR and optical datasets each. These were combined in pairs, such that the GSD of 
SAR-Optical image pairs is similar (matching and GCP transfer makes no sense, if the GSD between SAR and 
optical images is too different). The major image parameters are listed in Table 1. All optical data was delivered as 
8-bit and all SAR images had HH polarisation, except ERS-1, which had VV. A part of the overlapping area of the 
images is shown in Figure 2 for three SAR and three optical images. 
 

Table 1: Major image parameters. For each platform/sensor in brackets, the band and GSD. 

SAR Images SAR   
Acquisition Date Optical Images Optical 

Acquisition Date 
TerraSAR-X      (X, 3m) 10.2008 ALOS/PRISM             (PAN, 2.5m) 1.2006 
TerraSAR-X          (X, 3m) 10.2008 SPOT-5/HRG              (PAN, 2.5m) 8.2005 
RADARSAT-1      (C, 7m) 2.2008 LANDSAT-7/ETM+   (PAN, 15m) 3.2000 
ALOS/PALSAR    (L, 8m) 11.2008 LANDSAT-7/ETM+ (PAN, 15m) 3.2000 
ENVISAT/ASAR  (C, 25m) 4.2008 IRS-P6/LISS-3            (NIR, 23.5m) 7.2006 
ENVISAT/ASAR  (C, 25m) 4.2008 LANDSAT-7/ETM+   (R, 30m) 6.2001 
ERS-1/AMI           (C, 25m) - IRS-P6/LISS-3            (NIR, 23.5m) 7.2006 
ERS-1/AMI         (C, 25m) - LANDSAT-7/ETM+   (R, 30m) 6.2001 
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Figure 2: Examples of image parts from the different sensor data to be matched. Notice the huge differences not 
only between SAR and optical images (top to bottom), but also between SAR and between optical 
images. 

 
3. METHODOLOGY 
 
The above SAR-Optical pairs were processed using the steps as described below and in Figure 3. 
 

 
 

Figure 3: Overview of processing steps. 
 
-  Preprocessing to reduce noise (for SAR, especially speckle) ;  
-  Coarse co-registration of optical to SAR images (performed manually with a polynomial transformation (1-2 

degree) and remaining maximum parallaxes in this case of ca. 38 pixels) ;  
-  Generation of image pyramids (using a 3x3 Gaussian filter, 5 pyramid levels and a resolution reduction factor 2, 

so that maximum parallaxes on the top pyramid level are 2 pixels, the latter required as approximations for the 
specific matching method used (LSM)) ;  

-  At each pyramid level, Wallis filtering (Wallis, 1976) for optical images to enhance contrast, especially in 
shadow areas, and get more edges (not implemented for SAR, as remaining speckle noise is large and non-
salient edges would be much enhanced) ; 



-  At each pyramid level, computation of edge gradients (to increase similarity between SAR and optical images 
compared to original grey values) and adaptive thresholding of edge gradients (to reduce non-salient edges due 
to remaining noise), see Figure 4 ;  

-  At each pyramid level, before matching elimination of match-points with no or very weak texture (detecting 
poor x- or y- grey-level gradients, as there matching will fail) ; 

-  At each pyramid level, LSM (Gruen and Baltsavias 1988) and computation of quality measures, match-point 
quality characterisation, error detection and elimination, and except for the last pyramid level 0 (original images) 
derivation of approximations for the lower level ; 

- At level 0, match-point quality characterisation, error detection and elimination, and final decision. 
 

 
 

Figure 4: Left: original image (SAR) ; Middle: gradients ; Right: thresholded gradients. 
 
Details (limited due to lack of space) on some of the above steps are listed below, others in Braun (2010) and 
Soukal (2012). Noise reduction includes an adaptive local method for optical images and anisotropic diffusion for 
SAR ones. Elimination of poor texture points before matching leads to 2-13% less match-points, increasing with 
lower level. LSM was used, as it is very accurate and provides many quality criteria, even if slow and requiring 
good approximations (a few pixels for the parallaxes, i.e. shifts of the affine transformation used in LSM). Patches 
of 13x13 pixels from the SAR image were used as reference and the optical image patches (search) were affine 
transformed to them in an iterative fashion, minimizing the squared sum of residuals (here edge gradient 
differences). All image points, apart a small image border, were matched. Although LSM is an area-based matching 
(ABM) method, using gradients for matching, makes it a hybrid approach, i.e. something between ABM and 
feature-based matching (FBM), where here features are edges. Preliminary investigations extracting points or edges 
with interest operators or edge detectors, showed that a classical FBM would be more difficult than our approach, as 
points are too many, not distinct and very different between SAR and optical images, while one-pixel-wide edges 
are not only different and less than our edge gradients but also introduce false parallaxes.  
 
The 11 quality measures provided by LSM are: number of iterations, normalized cross-correlation computed 
separately after iteration convergence, sigma a posteriori, estimated values of 6 affine parameters and the standard 
deviations of the shifts (divided by sigma a posteriori). They are checked whether they follow a normal distribution, 
needed for deriving quality measure thresholds, and this was indeed the case, with the exception of the number of 
iterations, and much less some skewness in the normal distribution, caused by much more poor than good match-
points in this matching application.  Regarding these 11 quality measures, poor match-points are on one side of the 
distribution, except for the 6 affine parameters, which are two-sided, and the number of iterations, which for one 
iteration are also rather suspicious. For error detection after matching, we optionally use at each level the following 
tests: 
  
1.  Bi-directional matching consistency (matching search to reference patch and opposite, with a difference of more 

than 1 pixel between the two matchings for the reference point leading to rejection), points rejected are e.g. 39 - 
72% for the Landsat/Radarsat pair, increasing as pyramid levels decrease. 

2.  Combination of quality measures. Each measure should “pass” in an OR fashion, whereby thresholds for each 
measure are derived using robust statistics, median and the robust approximation of the standard deviation, 
s(MAD), with MAD = median absolute deviation from the median and s(MAD) = 1.484 * MAD, and a 
threshold for each measure derived as (median +/- n * s(MAD)), with n derived based on long a priori 
knowledge and empirical tests. Points rejected after this test are e.g. 99.3- 93.4% for the Landsat/Radarsat pair, 
decreasing as pyramid levels decrease. 



3.  The measures of test 2 above are each given a normalised score (0-1) using a separate fuzzy function. Then, a 
single quality value is computed using a weighted averaging of each quality measure score, whereby weights for 
each criterion are determined empirically. This allows selecting the N best match-points, in this work the best 
100. 

4. At the end of the tests, the local consistency of the x- and y-parallax of a point is tested and if enough neighbours 
exist, the point is deleted or its parallaxes are corrected to the median parallaxes of the neighbourhood. The % of 
deleted or corrected parallaxes is small (< than 5%). Thus, this test could be generally omitted, especially if the 
previous ones perform well. 

 
We evaluated two test combinations (1 and 2): 
 
-  Combination 1: tests 1, 2, 4 and ; 
-  Combination 2: test 3 (we tried also test 1 after 3 but too many points, many correct, were rejected, indicating 

the ad-hoc nature of this test).  
 
The above tests can be performed in the whole image or in tiles to ensure good point distribution. Due to lack of 
space, we do not treat details of derivation of approximations for parallaxes (shifts of affine transformation), which 
are very crucial, especially for LSM, and influence how many pyramid levels are needed, how matching results are 
propagated if more than one level needed, and the number of match points at 0 pyramid level. As a short statement, 
we use for approximations’ propagation only the good match-points (passing the error detection tests at each level), 
with a nearest neighbour interpolation of the parallaxes for the lower level points. For the second top level, we 
derive approximations and match all points, for lower levels only points within a neighbourhood (here 9x9 pixels) 
of each good match-point of the upper level. 
 
4. RESULTS 
 
Of the above 2 test combination methods, the 2nd is much more preferable and discussed below. It is faster (does not 
need the time-consuming bi-directional matching), provides more reliable results, a single quality value per point 
and gives control over the N best points kept. To ensure a good point distribution, which is often necessary for 
GCPS and georeferencing, for combination method 2, we select the best 100 points on pyramid level 0, plus the best 
point in image tiles (here 3x3) that are empty, i.e. have none of the N best points (see Figure 5).  
 

 
Figure 5:  Radarsat-1 (left), Landsat-7/ETM+ (right), top grey level images, bottom thresholded gradient images 

with 100 best points (in red) and best point in empty 3x3 tiles (in green).   
 
The evaluation of the results is very difficult as there are no reference data (can hardly be on image level, contrary 
to reference DSMs) and manual measurements are mostly even worse than matching results due the large 

 



differences between the matched images. Thus, we use a visual inspection of match-points using the original grey 
level images (not the image gradients) and a classification in % of correct, unsure and false matchings. The results 
are listed in Table 2. It is obvious that using low resolution images like ERS-1/Envisat with Landsat-7 (30m 
GSD)/IRS-P6 leads to worse quality. Regarding ERS-1 this is also due to the poor image quality (especially 
unsharpness) of the image. However, this visual inspection is subjective and very difficult, especially for the low 
resolution images. Thus, to find the real quality of the matching results we plan in the near future to georeference 
the optical images with these 100+ and the 20 best points and analyse the residuals of GCPs and check points (in the 
latter case, when only 20 GCPs are used). 
 
Table 2: Correctness of results on pyramid level 0 for all image pairs. With yellow and red, results are marked that 

are of inferior quality. 

SAR - Optical Image Pair No. of Best 
Match Points  

(Level 0) 

Correct 
(%) 

Unsure 
(%) 

False 
(%) 

TerraSAR-X (X, 3m)             - ALOS/PRISM (PAN, 2.5m) 106 98.1 0.0 1.9 
TerraSAR-X (X, 3m)             - SPOT-5/HRG (PAN, 2.5m) 103 89.1 8.9 2.0 
RADARSAT-1 (C, 7m)        - LANDSAT-7/ETM+ (PAN, 15m) 102 98.0 2.0 0.0 
ALOS/PALSAR (L, 8m)      - LANDSAT-7/ETM+ (PAN, 15m) 104 100.0 0.0 0.0 
ENVISAT/ASAR (C, 25m)  - IRS-P6/LISS-3 (NIR, 23.5m) 103 57.3 35.0 7.7 
ENVISAT/ASAR (C, 25m) - LANDSAT-7/ETM+ (R, 30m) 105 62.9 29.5 7.6 
ERS-1/AMI (C, 25m)           - IRS-P6/LISS-3 (NIR, 23.5m) 106 54.7 39.6 5.7 
ERS-1/AMI (C, 25m) - LANDSAT-7/ETM+ (R, 30m) 104 0.0 52.0 48.0 

 
5. EXTENSION OF THE MATCHING ERROR DETECTION METHOD TO DSM GENERATION 
 
The above method was used for a much more important application, namely automatic DSM generation with 
matching of optical images. Unfortunately, most commercial, but also research, matching methods and respective 
software do not provide quality criteria for each match point (or even if they do, the criteria are not reliable), and 
thus they also do not provide reliable methods for matching error detection. In the test below, we used data from a 
thorough, well-organised, international test of the German Society of Photogrammetry and Remote Sensing 
(DGPF), where also accurate reference DSM data from airborne laser scanning (ALS) existed (Cramer, 2010). 
Among the available data, we selected some image parts (in this case DMC images) and performed LSM with the 
same program as above. Then, we (a) accepted all match-points ; (b) rejected points with a cross-correlation 
coefficient (a commonly-used criterion) of less than 0.6 and (c) accepted points only  that passed the test 2 
mentioned in Section 3 above. Naturally, the number of points accepted from (a) to (c) was decreasing from 
220,000 to 151,000 points. The matched pixel coordinates were transformed via the given image orientation to 3D 
coordinates and these were compared to the 3D ALS reference data. Statistical results of the differences are listed in 
Table 3, and a colour-coded visualisation of the differences in Figure 6. As it can be seen from the Table 3 and 
Figure 6, the matching DSM after error detection by our method delivers much more accurate results with less 
blunders. 
 

   
Figure 6: Colour-coded differences of matching DSM to reference ALS DSM. Left: No error detection ; Middle: 

Cross-correlation < 0.6 ; Right: Test no. 2 above. Greenish colours represent the smallest errors, white non-
matched/rejected match-points. Note: although in the 3 figures the same numbers of intervals are used, their 
range varies, especially for the right figure, where the range of each colour is smaller. 



 
 
 
 
 
 

Table 3: Image matching with three error detection methods, as compared to reference ALS data. 
 

Error Detection Mean (m) Median (m) Standard Deviation (m) 
None 0.71 1.65 9.32 
Cross-correlation < 0.6 0.30 1.08 9.30 
Test no. 2 above 0.41 0.12 1.34 

 
6. DISCUSSION AND CONCLUSIONS 
 
The above results show that our approach delivers very good results, although the test data was very variable and 
difficult. The quality characterization and error detection for matching are innovative. Further research may include 
refinement of the above methods for error detection (use DSM slope and roughness, land-cover and a subsequent 
sensor orientation as mentioned above), estimation of absolute (instead of relative) single quality values (should be 
expressed for this case in pixels), avoidance of manual coarse co-registration (using approximate sensor position 
and attitude data, especially RPCs (Rational Polynomial Coefficients)) and tests of these methods in matching of 
only optical or only SAR images and for other matching methods and associated quality criteria. Furthermore, the 
results of error detection of matching of optical images are a strong indication that the proposed method can be very 
helpful and be used for far more important applications, like DSM generation. 
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