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Abstract: e-GPS (Electronic Global Positioning System), which is used in Taiwan, is a type of real-time kinematic 
satellite positioning technology, such as VRS-RTK (Virtual Reference Station Real Time Kinematic). The height 
difference between ellipsoidal height h and orthometric height H is called undulation N. For a point p, if the values 
of h from e-GPS and N from regional geoid model are known, the H value of point p can be calculated using the 
following equation: NhH −= . This is the basic principle of e-GPS leveling. Data analysis of test results revealed 
that the estimated orthometric height from e-GPS leveling may have systematic errors. This paper proposes a BP 
(back-propagation) neural network and BP neural network method (BP&BP) method to manage the systematic 
errors of the estimated orthometric height Ĥ from e-GPS leveling. The main goal of the proposed method is to 
mitigate the systematic errors of orthometric height Ĥ from e-GPS leveling efficiently. Subsequently, the e-GPS 
leveling accuracy may be improved. 

Three data sets (including plane coordinates, ellipsoidal height h from static GPS, orthometric height H from 
first-order leveling, and ellipsoidal height h from e-GPS) of 145 benchmarks from Tainan City, Taiwan, were used 
to test the proposed method. The test results show that the proposed method can mitigate the systematic errors of 
orthometric height Ĥ from e-GPS leveling efficiently. The proposed methods and the detailed test results are 
presented in this paper. 

 
INTRODUCTION 
 

e-GPS (Electronic Global Positioning System), used in Taiwan, is a kind of real-time kinematic satellite 
positioning technology as VRS-RTK (Virtual Reference Station Real Time Kinematic). 

Because of basing on different vertical datum, any point on the surface of the Earth, its ellipsoidal height h and 
orthometric height H are different. The height difference between h and H is called undulation N. Suppose it can be 
ignored that the vertical deflection on ground is very small, then any point on the ground, the relationship among h, 
H and N, can be represented it with a simple mathematical equation: NHh += （Hu, et al., 2004; Kavzoglu and 

Saka, 2005; Kuhar et al., 2001; Stopar et al., 2006）. Therefore, for a point p, if the values of h from e-GPS and N 
from regional geoid model are known, then H value of point p can be calculated by the following 
equation: NhH −= . This is the basic principle of e-GPS leveling. 

For a certain region, if the regional geoid model has been constructed, the undulation of any point N̂ can be 
estimated by means of interpolation method. If, the accuracy of the estimated value N̂ meets the required accuracy, 
the orthometric height H of any point can be calculated quickly by means of e-GPS leveling. 

In the past, many experts and scholars have been engaged in research for geometric fitting construction of the 
regional geoid model theme. They used the following geometric fitting methods: conicoid fitting method (Hu et al., 
2004; Lin, 2007), neural network method (Hu, et al., 2004; Kavzoglu and Saka, 2005; Kuhar, et al., 2001; Lin, 2007; 
Stopar et al., 2006), support vector machine (Zaletnyik, et al., 2008) and so on. In their studies, the author(s) 
applied different geometric fitting methods to construct a regional geoid model, under different regional conditions, 
and got good results.  

In general, due to the complexity of distribution of the geoid, use of geometric fitting to determine the regional 
geoid model, the selected model always exists model errors or systematic errors. Therefore, how to mitigate or 
eliminate the model errors or systematic errors of the regional geoid model has also become one of the research 
topics. The proposed methods to mitigate or eliminate the systematic errors of the regional geoid model are: the 
geoid model errors treated as additional parameters using the least squares method (Hu and Sun, 2009), the geoid 
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model errors treated as parameters using least squares collocation method (Hu and Sun, 2009), a quadratic surface 
fitting an BP neural network method (Hu, et al., 2004; Hu and Sun, 2009).  

If, on the other hand, the geoid model of a region is available. And the ellipsoidal height h of each benchmark of 
this region can be measured by e-GPS. Then, each benchmark has two kinds of orthometric height, an announced 
orthometric height H from governments, and estimated orthometric height Ĥ（ N̂hĤ −= ）from e-GPS leveling. 

The difference between the two values is ĤHH −=∆ . Supposed that there are n benchmarks in this region, then, 
there are n values of H∆ . Those statistics, such as mean square error, standard deviation, mean, etc. (Ghilani, 2010) 
from n values of H∆ can be used to evaluate the performance of e-GPS leveling.  

Through data analysis of test results, it is found that the H∆ standard deviation of all benchmarks is greater than 
the expected value in the test area, but also the mean of H∆ is not equal to 0.000m. So, it is suspected that Ĥ from 
e-GPS leveling may contain systematic errors. Sources of systematic errors may come from the regional geoid 
model, various height accuracies between different values of h from e-GPS and static GPS, etc. Therefore, three 
methods, conicoid fitting method (CFM), BP (back-propagation) neural network and BP neural network method 
(BP&BP), and BP neural network and conicoid fitting method (BP&CFM), are proposed in this paper, in order to 
mitigate or eliminate the systematic errors of the e-GPS leveling. This paper is divided into four sections, as an 
introduction for the first section, section two is the description of proposed methods to improve e-GPS leveling 
accuracy, for test results and discussion in section three, fourth section for the conclusion of this paper. 
 
PROPOSED METHODS TO IMPROVE E-GPS LEVELING ACCURACY 
 
Related Terms Definitions 
 

For ease of describing the proposed methods and test results, the related terms, statistical values, etc. are defined 
as follows. 

Assume the announced orthometric height of a benchmark is H (treated as a true value), and its estimated 
orthometric height from e-GPS leveling is Ĥ . The difference between H and Ĥ is defined as: 

n,,2,1i,ĤHH iii =−=∆             (1) 

where n,,2,1i = ,denotes the serial number of benchmarks; n indicates the total number of benchmarks.  
Therefore, for an test region, with n benchmarks, after e-GPS leveling, the maximum, minimum, mean, mean 

square error, and standard deviation (Ghilani, 2010) of n benchmarks’ H∆ can be calculated accordingly. Equation 
(2), (3), and (4), define the mean, standard deviation and mean square error of H∆ respectively. 
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Assuming the relationship between H∆ and plane coordinates )y,x( of n benchmarks can be expressed by the 
following equation: 

n,,2,1i,v)y,x(fH iiii =+=∆            (5) 

where iv denotes the residual of benchmark I; )y,x(f ii is a function which establishes the relationship between a 
benchmark’s H∆ and its plane coordinates. The geometric fitting methods, such as conicoid fitting method, BP 
neural network method, etc., can be used to determine function )y,x(f ii .  

The following data { }n21 ,P,,PPP = from n benchmarks are used to determine the function )y,x(f ii .  



n,,2,1i),H,y,x(P iiii =∆=             (6) 

Assume that there are n benchmarks in a test region. These n benchmarks will be divided into three categories, 
reference points, check points, and validation points respectively. Data from reference points, with 1n (about 3/4 of 
total n benchmarks) points, will be used to determine the coefficients of the polynomial function or to train the 
neural network and estimate the Ĥδ of every reference point’s H∆ . With 2n  ( 12 nnn −= , about 1/4 of total n 
benchmarks) points, data from check points, will be used to evaluate the fitting accuracy of the determined 
polynomial function or the trained neural network and estimate the Ĥδ of every check point’s H∆ . Finally, data 
from validation points, with n points, will be used to estimate the Ĥδ of every validation point’s H∆ . 

If the estimated Ĥδ (denoting the systematic errors of Ĥ from e-GPS leveling) values of n benchmarks are 
available, the corrected orthometric height H~ and corrected orthometric height difference H~∆ after the first time 
systematic errors correction, can be calculated by equations (7) and (8) respectively.  

n,,2,1i,ĤĤH~ iii =δ+=             (7) 

n,,2,1i,H~HH~ iii =−=∆             (8) 

If find that there are still some systematic errors, then further assume that the following equation can express 
the relationship between H~∆ of n benchmarks and their plane coordinates )y,x( . 

n,,2,1i,v~)y,x(gH~ iiii =+=∆            (9) 

where iv~ denotes the residual of benchmark i; )y,x(g ii is a function which establishes the relationship between 

benchmark’s H~∆ and its plane coordinates )y,x( .  
The following data { }n21 ,Q,,QQQ = from n benchmarks are used to determine the function )y,x(g ii . 

n,,2,1i )H~,y,x(Q iiii =∆=            (10) 

Again, assume that there are n benchmarks in an test region. These n benchmarks will be divided into three 
categories, reference points, check points, and validation points respectively. Data from reference points, with 

1n (about 3/4 of total n benchmarks) points, will be used to determine the coefficients of the polynomial function or 

to train the neural network and estimate the Ĥ̂δ of every reference point’s H~∆ . With 2n  ( 12 nnn −= , about 1/4 
of total n benchmarks) points, data from check points, will be used to evaluate the fitting accuracy of the 

determined polynomial function or trained neural network and estimate the Ĥ̂δ of every check point’s H~∆ . Finally, 

data from validation points, with n points, will be used to estimate the Ĥ̂δ of every validation point’s H~∆ . 

If the estimated Ĥ̂δ  (denoting the systematic errors of H~ ) values of n benchmarks are available, the 

corrected orthometric height H
~~ and corrected orthometric height difference H

~~
∆ after the second time systematic 

errors correction, can be calculated by equations (11) and (12) respectively. 

n,,2,1i,Ĥ̂H~H
~~

iii =δ+=             (11) 

n,,2,1i,H
~~HH

~~
iii =−=∆             (12) 

The varied statistical values, such as mean square error, standard deviation, etc., of H~∆ , H
~~

∆ , Ĥδ , Ĥ̂δ can be 
computed in the light of calculation of varied statistical values of H∆ . In addition, for 
simplicity, refσ , chkσ , valσ represent the standard deviations of reference points, check points, and validation points 
respectively. 
 
Conicoid Fitting Method (CFM) 

 
The conicoid fitting method (CFM, also known as polynomial fitting) is usually used to construct a regional 



geoid model (Hu et al., 2004; Hu and Sun, 2009; Lin, 2007). However, CFM will be used to estimate Ĥδ . The 
following polynomial represents the function )y,x(f ii of equation (5): 

++++++= 2
i6

2
i5ii4i3i21ii yaxayxayaxaa)y,x(f         (13) 

where ,a,a,a 321 denotes the undetermined coefficients of a polynomial. Three types of CFM will be tested 
in this paper, i.e. 4-parameter CFM (a polynomial with undetermined coefficients 41 a,,a  ), 6-parameter CFM (a 
polynomial with undetermined coefficients 61 a,,a  ), and 10-parameter CFM (a polynomial with undetermined 
coefficients 101 a,,a  ). When the total number of benchmarks is greater than the number of undetermined 
coefficients, the undetermined coefficients of a polynomial can be estimated using the least squares method. And, 
then enter the plane coordinates )y,x( of benchmarks within the region to equation (13), those values, such 

as Ĥδ , H~ , and H~∆ ,after the first time systematic error correction of e-GPS leveling, can be estimated using the 
following CFM procedures. 

 
BP Neural Network and BP Neural Network Method (BP&BP) 
 
Back-propagation (BP) neural network (i.e., the multilayer feed-forward neural network), is one of the neural 

network algorithms. The structure of BP neural network is divided into input layer, hidden layer and an output 
layer.  

BP neural networks are often used to construct a regional geoid model (Hu et al., 2004; Hu and Sun, 2009; 
Kavzoglu and Saka, 2005; Kuhar et al., 2001; Lin, 2007; Lin, 2012; Stopar et al., 2006). However, this paper will 

use the BP neural network and BP neural network method (BP&BP) to estimate the values of Ĥδ and Ĥ̂δ of e-GPS 
leveling respectively.  

First of all, a 1p2 1 ×× BP neural network (2 represents the input layer has two elements, plane 
coordinates )y,x( of each point; 1p denotes the number of neurons in the hidden layer; 1 represents the output layer 
has 1 element, H∆ value of each point), is trained to determine the function )y,x(f ii of equation (5), using n 
benchmarks data { }n21 ,P,,PPP = . And then enter the plane coordinates )y,x( of points within the region, to 

calculate Ĥδ , H~ , and H~∆ values of all benchmarks, after the first time systematic errors correction of e-GPS 
leveling. 

Next, a 1p2 2 ×× BP neural network (2 represents the input layer has two elements, plane coordinates )y,x( of 
each point; 2p denotes the number of neurons in the hidden layer; 1 represents the output layer has 1 element, 

H~∆ value of each point), is trained to determine the function )y,x(g ii  of equation (9), using n benchmarks 

data { }n21 ,Q,,QQQ = . And then enter the plane coordinates )y,x( of points within the region, to calculate Ĥ̂δ , H
~~ , 

and H
~~

∆ values of all benchmarks, after the second time systematic errors correction of e-GPS leveling. 
 
BP Neural Network and Conicoid Fitting Method (BP&CFM) 

 
If n benchmarks data { }n21 ,P,,PPP = are available, first find the mean H∆ of all points’ H∆ , using equation 

(2). And, then calculate the dH value of each point using the following equation. 

n,,2,1i,HHdH ii =∆−∆=             (14) 

If the following equation can express the relationship between the dH values of n benchmarks and their plane 
coordinates )y,x( . 

n,,2,1i,v
~~)y,x(hdH iiii =+=            (15) 

where iv
~~ indicates the residual of benchmark i. 

There are two steps to be followed using BP&CFM. First of all, train a 1p2 1 ×× BP neural network (2 
represents the input layer has two elements, plane coordinates )y,x( of each point; 1p denotes the number of 
neurons in the hidden layer; 1 represents the output layer has 1 element, dH value of each point), using n 



benchmarks data n,,2,1i),dH;y,x( iii = , to determine the function )y,x(h ii of equation (15). And then enter the 

plane coordinates )y,x( of points within the region, to calculate the estimation Ĥdδ of all points’ dH . Finally, 

calculate Ĥδ (using equation (16)), H~ , and H~∆ of all benchmarks. 

n,,2,1i,ĤdHĤ ii =δ+∆=δ             (16) 

Next, determine the CFM’s 6 polynomial coefficients of function )y,x(g ii of equation (9), using the least 
squares method, with all data { }n21 ,Q,,QQQ = . And then enter the plane coordinates )y,x( of points within the 

region, to calculate Ĥ̂δ , H
~~ , and H

~~
∆ values of all benchmarks. 

 
TEST RESULTS AND DISCUSSION 
 
Tainan e-GPS System 

 
Tainan City Government has established its e-GPS system in September 2007. The e-GPS system contains 6 

reference stations, and covers the whole city. Five reference stations, SCES, NJES, RFES, WHES, BKBL, evenly 
distributed in Tainan city's borders, forming a nearly regular pentagon network; and the approximate geographic 
center in Tainan City setting of the sixth reference station, KAWN, its location just in the pentagonal-shaped center. 
And, it makes all the distances between the reference stations less than 30 km. In order to improve the accuracy and 
efficiency of e-GPS surveying in the mountain area, the seventh reference station, YJLO, was installed in April 
2010. Hence, the Tainan e-GPS system has 7 reference stations since then. All reference stations are equipped with 
Trimble NetR5, and the mobile stations are equipped with Trimble R8. Both types of receivers, Trimble NetR5 and 
Trimble R8, can track signals from GPS satellites and GLONASS satellites. The distribution map of 7 reference 
stations of Tainan e-GPS system is shown in Figure 1.  

Tainan e-GPS system, through the field testing, achieving the following accuracies: ±2cm in plane 
coordinates )y,x( , and ±5cm in ellipsoidal height h, its accuracy is sufficient to be applied to the cadastral 
surveying, engineering surveying, etc. (Tainan, 2012).  

 
Test Data 
 

Three data sets of Tainan area (with total area of about 2,192 square kilometers or 219,200 hectares) are used 
to test the proposed methods. The data sets including: (1) data set 1 of 145 first-order benchmarks, with orthometric 
height H from first-order leveling and plane coordinates )y,x( and ellipsoidal height h from static GPS surveying of 
2003, provided by the Ministry of the Interior, Republic of China; (2) data set 2 of 145 first-order benchmarks, with 
orthometric height H only from first-order leveling of 2009, provided by the Ministry of the Interior, Republic of 
China; (3) data set 3 of 118 first-order benchmarks, with plane coordinates )y,x( and ellipsoidal height h from 
Tainan e-GPS system of 2011, provided by Tainan City Government. 
 
Test Results and Discussion 
 
Accuracy Analysis of e-GPS Leveling: The following procedures are performed to evaluate the accuracy of e-GPS 
leveling: (1) Train a 1p2 1 ×× BP neural network (2 represents the input layer has two elements, plane 
coordinates )y,x( of each benchmark; 1p denotes the number of neurons in the hidden layer; 1 represents the output 
layer has 1 element, undulation N of each benchmark), in order to construct a regional geoid model of Tainan City, 
with 145 first-order benchmarks of data set 1; (2) Estimate undulation N̂ of all 118 first-order benchmarks of data 
set 3, using the trained 1p2 1 ×× BP neural network and the plane coordinates )y,x( of each benchmark; (3) 

Calculate the orthometric height Ĥ , using the formula of N̂hĤ −= , with the ellipsoidal height h from e-GPS 
system and the estimated undulation N̂  from the above procedure, of all 118 first-order benchmarks of data set 3; 
(4) Compute the height difference H∆ , using the formula of ĤHΔH −= (H denotes the orthometric height from 
data set 2, and Ĥ represents the estimated orthometric height from procedure 3), of all 118 first-order benchmarks of 
data set 3. 

According to the preceding procedure 1, in order to construct a regional geoid model of Tainan City with BP 
neural network, 145 first-order benchmarks of data set 1 are divided into two groups, one group as the reference 
point (109 points) to train a BP neural network; another group as a check point (36 points) to assess the accuracy of 
the regional geoid model.  



 
Since orthometric height H and ellipsoidal height h of each benchmark of data set 1 are known, the undulation 

N of each benchmark can be calculated using the formula HhN −= . And, it is assuming that N is the true value. 
Suppose further that the undulation of each benchmark estimated by the trained BP neural network is N̂ , then, the 
undulation difference N∆ of each benchmark, is defined by the following equation. 

n,,2,1i,N̂NN iii =−=∆             (17) 

where n,,2,1i = stands for the sequential number of check points; n is the total number of check points. 
 

 
Figure 1. The distribution map of 7 reference stations of Tainan e-GPS system. 

 
After trial and error tests, it is found that a 1352 ×× BP neural network can offer better regional geoid model 

accuracy (Lin, 2007; Lin, 2012). The statistics of N∆ of 36 check points of data set 1 are shown in Table 1. In Table 
1, ‘m (m)’ indicates mean square error in units of meter; ‘ σ (m)’ indicates standard deviation in units of meter; 
‘Mean (m)’ indicates mean value in units of meter; ‘Maximum (m)’ indicates maximum value in units of meter; 
‘Minimum (m)’ indicates minimum value in units of meter. 

 
Table 1. The statistics of N∆ of 36 check points of data set 1, using a geoid model from 1352 ×× BP neural 

network.  

m (m) σ (m) Mean (m) Maximum (m) Minimum (m) 
±0.029 ±0.028 0.009 0.089 -0.054 

 
Based on the previously mentioned procedures 2 to 4, compute the height difference H∆ of all 118 first-order 

benchmarks of data set 3. The statistics of H∆ of all 118 first-order benchmarks are shown in Table 2. It can be seen 
from the results of Table 2 that the standard deviation of H∆ is ± 0.050m. 

 
Table 2. The statistics of H∆ of 118 first-order benchmarks of Tainan City. 

m (m) σ (m) Mean (m) Maximum (m) Minimum (m) 
±0.072 ±0.050 -0.051 0.061 -0.213 

 
The accuracy of h from e-GPS system is ± 0.050m (Tainan, 2012). Besides, the accuracy of estimated 

undulation N̂ is ± 0.028m, according to the results of Table 1. Based on the formula N̂hĤ −= and according to the 
principle of error propagation, the accuracy of Ĥ from e-GPS leveling is ±0.057m.  

By definition of ĤHH −=∆ , where the accuracy of H is ±0.009m (Yang et al., 2003); the accuracy of Ĥ is 
±0.057m. According to the principle of error propagation, the accuracy of ΔH from e-GPS leveling is ±0.058m.   



Therefore, further examining the results of Table 2, it is found that (1) the standard deviation and mean square 
error ofΔH varies considerably (0.022m), and (2) the mean value ofΔH is -0.051m (not 0.000m). Therefore, 
judging the test results of the e-GPS leveling, it may still have some systematic errors to be corrected. 

 
Test Results of Proposed Methods: { }n21 ,P,,PPP = and { }n21 ,Q,,QQQ =  data of 118 first-order benchmarks 
of data set 3, will be used to test the three proposed methods. The number of reference points 1n , check 
points 2n and validation point n of data set 3 are 89, 29, and 118 respectively. 
 

A. Test Results of CFM  
 

Based on the above-mentioned procedures of CFM, data of 118 first-order benchmarks are used to test the 
performances of 4-parameter, 6-parameter, and 10-parameter CFM. The statistics of ΔH of 118 first-order 
benchmarks, before and after correcting systematic errors estimated by 4-parameter, 6-parameter, and 10-parameter 
CFM, are shown in Table 3. In Table 3, )A/N(H∆ denotes the value of H∆ before correcting systematic errors; 

)par4(H~ −∆ , )par6(H~ −∆ , and )par10(H~ −∆ denote the value of H∆ after correcting systematic errors estimated by 
4-parameter, 6-parameter, and 10-parameter CFM respectively.   

Can be seen from the results in Table 3, after correcting systematic errors estimated by 4-parameter CFM, the 
standard deviation of H~∆ decreased ±0.037m (close to the mean square error value), and the mean of H~∆ dropped to 
0.000m; after correcting systematic errors estimated by 6-parameter CFM, the standard deviation of H~∆ decreased 
±0.034m (close to mean square error), and the mean of H~∆ dropped to 0.000m; after correcting systematic errors 
estimated by 10-parameter CFM, the standard deviation of H~∆ decreased ±0.028m (With mean square error differ 
by ± 0.002m ), and the mean of H~∆ dropped to- 0.011m. 

 
Table 3. The statistics ofΔH of 118 first-order benchmarks, before and after correcting systematic errors estimated 

by 4-parameter, 6-parameter, and 10-parameter CFM  

H∆  m (m) σ (m) Mean (m) Maximum (m) Minimum (m) 
)A/N(H∆  ±0.072 ±0.050 -0.051 0.061 -0.213 

)par4(H~ −∆  ±0.036 ±0.037 0.000 0.091 -0.136 

)par6(H~ −∆  ±0.034 ±0.034 0.000 0.070 -0.122 

)par10(H~ −∆  ±0.030 ±0.028 -0.011 0.098 -0.087 

 
B. Test Results of BP&BP 

Based on the specific procedures of BP&BP, systematic errors of e-GPS leveling, Ĥδ and Ĥ̂δ , should be 
estimated by 1p2 1 ×× and 1p2 2 ×× BP neural networks respectively. In order to determine the number of 
neurons 1p and 2p using trial and error method, { }n21 ,P,,PPP = and { }n21 ,Q,,QQQ = data of 118 first-order 
benchmarks are used to train 1p2 1 ×× and 1p2 2 ×× BP neural networks respectively. In order to demonstrate the 
procedures of determining the number of neurons 1p with trial and error method, the statistics 

of refσ , chkσ and valσ of Ĥδ of 118 first-order benchmarks, after changing the number of neurons ( 15,,2,1p1 = ) in 
the hidden layer of 1p2 1 ×× BP neural network, are shown in Table 4. It can be seen from Table 4 that when the 
number of neurons 1p is 8 the results are best. Hence, a 182 ××  BP neural network will be used to estimate values 

of Ĥδ , H~ , H~∆  of 118 first-order benchmarks. 
Then, the number of neurons 2p of 1p2 2 ××  BP neural network is determined, using trial and error method, 

with { }n21 ,P,,PPP = and { }n21 ,Q,,QQQ = data of 118 first-order benchmarks. It is found that the number of 

neurons 2p is 5 the results are best. Hence, a 152 ××  BP neural network will be used to estimate values of Ĥ̂δ 、

H
~~ and H

~~
∆  of 118 first-order benchmarks. The statistics of refσ , chkσ and valσ of Ĥ̂δ of 118 first-order benchmarks, 

using a 152 ×× BP neural network are shown in Table 5. 
Table 6 shows that the statistics ofΔH of 118 first-order benchmarks, before and after correcting systematic 

errors estimated by BP&BP. In Table 6, )A/N(H∆ denotes the value of H∆ before correcting systematic errors; 

)1821BP(H~ ××−∆ and )1522BP(H
~~

××−∆ denote values of H∆ after correcting systematic errors estimated by 



182 ××  BP neural network and 152 ××  BP neural network respectively. Be seen from the results in Table 6, after 
correcting systematic errors estimated by a 182 ×× BP neural network, the standard deviation of H~∆ decreases to 
±0.030m (difference between the standard deviation and the mean square error is ±0.014m), the mean 
of H~∆ declines to 0.032m. After correcting systematic errors estimated by a 152 ×× BP neural network, the 

standard deviation of H
~~

∆ decreases to ±0.029m (equal to the mean square error), and the mean of H
~~

∆ declines to 
-0.007 m. 

 
Table 4. The statistics of refσ , chkσ and valσ of Ĥδ of 118 first-order benchmarks, after changing the number of 

neurons ( 15,,2,1p1 = ) in the hidden layer of 1p2 1 ×× BP neural network 

1p   1 2 3 4 5 6 7 8 

refσ (m) 0.032 0.028 0.028 0.027 0.028 0.028 0.033 0.027 

chkσ (m) 0.039 0.034 0.033 0.034 0.034 0.036 0.041 0.032 

valσ (m) 0.035 0.032 0.030 0.030 0.031 0.032 0.038 0.029 

1p  9 10 11 12 13 14 15  

refσ (m) 0.029 0.028 0.029 0.029 0.028 0.030 0.029  

chkσ (m) 0.036 0.034 0.033 0.033 0.033 0.033 0.034  

valσ (m) 0.033 0.030 0.030 0.031 0.031 0.030 0.031  
 

Table 5. The statistics of refσ , chkσ and valσ of Ĥ̂δ of 118 first-order benchmarks, using a 152 ×× BP neural network 

refσ  (m) chkσ  (m) valσ  (m) 
0.029 0.032 0.029 

 
Table 6. The statistics ofΔH of 118 first-order benchmarks, before and after correcting systematic errors estimated 

by BP&BP  

H∆  m (m) σ (m) Mean (m) Maximum (m) Minimum (m) 
)A/N(H∆  ±0.072 ±0.050 -0.051 0.061 -0.213 

)1821BP(H~ ××−∆  ±0.044 ±0.030 0.032 0.119 -0.063 

)1522BP(H
~~

××−∆   
±0.029 

 
±0.029 

 
-0.007 

 
0.077 

 
-0.105 

 
C.  Test Results of BP&CFM  

Based on the specific procedures of BP& CFM, systematic errors of e-GPS leveling, Ĥδ and Ĥ̂δ , should be 
estimated by a 1p2 1 ×× BP neural network and a 6-parameter CFM respectively. In order to determine the number 
of neurons 1p using trial and error method, { }n21 ,P,,PPP = data of 118 first-order benchmarks are used to train 
a 1p2 1 ×× BP neural network. It is found that the number of neurons 1p is 2 the results are best. Hence, a 122 ××  BP 

neural network will be used to estimate values of Ĥδ , H~ , H~∆ of 118 first-order benchmarks. Then, 6 parameters of 
CFM are estimated, using least squares method, with { }n21 ,Q,,QQQ = data of 118 first-order benchmarks. Finally, 

values of Ĥ̂δ 、H
~~ and H

~~
∆  of 118 first-order benchmarks are estimated by a 6-parameter CFM. 

Table 7 shows statistics ofΔH of 118 first-order benchmarks, before and after correcting systematic errors 
estimated by BP&CFM. In Table 7, )A/N(H∆ denotes the value of H∆ before correcting systematic 

errors; )1221BP(H~ ××−∆ and )par62CFM(H
~~

−−∆ denote values of H∆ after correcting systematic errors estimated 
by 122 ××  BP neural network and 6-parameter CFM respectively. 

It can be seen from the results in Table 7, after correcting systematic errors estimated by a 122 ×× BP neural 
network, the standard deviation of H~∆ decreases to ±0.031m (difference between the standard deviation and the 
mean square error is ±0.011m), the mean of H~∆ declines to 0.029m. Then, after correcting systematic errors 

estimated by a 6-parameter CFM, the standard deviation of H
~~

∆ decreases to ±0.029m (equal to the mean square 



error), and the mean of H
~~

∆ declines to 0.000 m. 
 

Table 7. The statistics ofΔH of 118 first-order benchmarks, before and after correcting systematic errors estimated 
by BP&CFM algorithm.  

H∆  m (m) σ (m) Mean (m) Maximum (m) Minimum (m) 
)A/N(H∆  ±0.072 ±0.050 -0.051 0.061 -0.213 

)1221BP(H~ ××−∆  ±0.042 ±0.031 0.029 0.119 -0.079 

)par62CFM(H
~~

−−∆  ±0.029 ±0.029 0.000 0.066 -0.105 

 
D. Summary 

 
The statistics ofΔH of 118 first-order benchmarks, before and after correcting systematic errors estimated by 

CFM, BP&BP, and BP&CFM respectively, are summarized and shown in Table 8. In Table 8, N/A stands for the 
value of H∆ without any systematic error correction; 4-CFM, 6-CFM and 10-CFM denote values of H~∆ after 
correcting systematic errors estimated by 4-parameter, 6-parameter, and 10-parameter CFM respectively; BP&BP 

denotes the value of H
~~

∆ after correcting systematic errors estimated by a 182 ××  BP neural network and 

a 152 ×× BP neural network respectively; BP&CFM indicates the value of H
~~

∆ after correcting systematic errors 
estimated by a 122 ××  BP neural network and 6-parameter CFM respectively.  

Can be seen from the results of Table 8, after systematic error correction estimated by CFM, BP&BP, and 
BP&CFM, the standard deviation of H∆ can be reduced considerably. Among them, the performances of BP&CFM 
and BP&BP are the best. In terms of reduced the mean of H∆ , BP&CFM, 4-CFM and 6-CFM perform the best. 
Then, it is checked that whether the mean square error of H∆ is equal to the standard deviation of H∆ or not? It is 
found that BP&CFM, BP&BP and 6-CFM meet the requirements. Therefore, on three aspects into consideration, i.e. 
(1) Is the standard deviation of H∆  the smallest? (2) Is the standard deviation of H∆ equal to the mean square error 
of H∆ ? (3) Is the mean of H∆ is equal to 0.000m? It is found that the performance of BP & CFM is the best, and 
followed by BP&BP. The H∆ comparison charts of 118 first-order benchmarks, before and after correcting 
systematic errors estimated by BP&CFM, are shown in Figure 2. In Figure 2, “No Corr.” denotes the value 
of H∆ before correcting systematic errors; “After BP1 Corr.” and “After CFM2 Corr.” denote values of H∆ after 
correcting systematic errors estimated by 122 ××  BP neural network and 6-parameter CFM respectively; the 
vertical axis expresses the value of H∆  (m); and the horizontal axis stands for the sequential number of 118 
first-order benchmarks. 

 
Table 8. The statistics of H∆ of 118 first-order benchmarks, before and after correcting systematic errors estimated 

by CFM, BP&BP, and BP&CFM respectively. 

H∆  m (m) σ (m) Mean (m) Maximum (m) Minimum (m) 
N/A ±0.072 ±0.050 -0.051 0.061 -0.213 

4-CFM ±0.036 ±0.037 0.000 0.091 -0.136 
6-CFM ±0.034 ±0.034 0.000 0.070 -0.122 

10-CFM ±0.030 ±0.029 -0.011 0.098 -0.087 
BP&BP  ±0.029 ±0.029 -0.007 0.077 -0.105 

BP&CFM  ±0.029 ±0.029 0.000 0.066 -0.105 
 
COMCLUSIONS 

 
Address the systematic errors of estimated orthometric height Ĥ of e-GPS leveling, three methods, i.e. CFM, 

BP&BP, and BP&CFM, are proposed in this paper. Three data sets of Tainan City are used to test the proposed 
methods. The test results show that, among the three methods, BP & CFM is the most effective way to mitigate the 
systematic errors of e-GPS leveling, followed BP&BP, and 6-parameter CFM. Using BP & CFM algorithm, for 
example, the standard deviation of H∆ is reduced to ±0.029m from ±0.050m and the mean of H∆ is equal to 
0.000m. 

In this paper, it is found that the systematic errors of e-GPS leveling can be mitigated effectively if BP&CFM 
is applied, using the data sets from Tainan City. However, if the test area is increased, such as the southern region of 
Taiwan, and even extended to the entire island of Taiwan, the BP & CFM algorithm, is still valid? Remains to be 
further validated in the future 



 

Figure 2. The H∆ comparison charts of 118 first-order benchmarks, before and after correcting systematic error 
estimated by BP&CFM. 
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