Characterization of urban NO₂ transport with WRF-Chem and Differential Optical Absorption Spectroscopy Gerry Bagtasa¹, Yasuka Mabuchi², Hayato Saito²,Ippei Harada³, Shumpie Kameyama⁴, Hiroaki Kuze² ¹Institute of Environmental Science & Meteorology, University of the Philippines, Diliman, Quezon City, Philippines, 1004 gerrybagtasa@gmail.com ²Center for Environmental Remote Sensing, Chiba University, 1-33 Yayoi-Cho Inage-ku Chiba City, Japan 263-8522 ³Dept. Of Environmental Information, Tokyo University of Information Sciences, Wakaba-ku, Chiba, 265-8501 Japan ⁴Mitsubishi Electric Corp., Information technology R&D Center, Kamakura-shi, 247-8501 Japan **Abstract:** The temporal and spatial distribution of NO₂ within parts of Kanto region in central Japan were characterized with a Differential Optical Absorption Spectroscopy (DOAS) and a regional airquality model WRF-Chem initialized by a coherent Doppler lidar. The DOAS system utilizes existing aviation obstruction xenon flashlamps to measure averaged column NO₂ concentration. Simulation of NO₂ emission, transport and dispersion using WRF-Chem reproduced the observations well. Physical initialization of initial and boundary wind conditions was applied using wind velocity data from a high resolution all-fiber coherent Doppler lidar, the initialized simulation case have qualitatively better correspondence to DOAS and ground measurements. The Doppler wind data proves suitable as input in a high-resolution chemical transport model. Moreover, the result reiterates the importance of getting accurate meteorological data in air quality modeling to properly characterize urban pollutants. Keyword: DOAS, air quality, wind lidar, doppler lidar, WRF-Chem