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ABSTRACT: Field server is the equipment used for monitoring the rice field using RGB images acquired daily
e.g., at 10 am. or 2p.m. The obtained RGB images are used to compute the vegetation indices which are used to
analyze and monitor the rice growing stage and health. However, the reflectance information on each RGB channel
is contaminated by illumination changing which can affect the computed vegetation indices such as the fluctuation of
their time series. In this paper, I proposed to use the intrinsic images of the scene to compute the vegetation indices.
The term intrinsic images was proposed by Barrow and Tenenbaum (Barrow and Tenenbaum (1978)) as the midlevel
description of a scene. Precisely, an image of the scene is defined as the product of an illumination image and a
reflectance image. Assuming that the reflectance of the scene is constant and illumination changes, the decomposition
of the illumination and reflectance images uses the image sequences of rice paddy field recorded at different times.
The decomposed reflectance image is then independent from the illumination change and used for computing the
vegetation index. To test the performance of the proposed method, the images used was from the rice fields located
in Suphanburi provinces, Thailand. The time series of the vegetation index computed from the decomposed intrinsic
image was much smoother than that of fluctuating vegetation index computed from original RGB images. The
smoother time series of vegetation index can improve the interpretation of rice growing state.

1. Introduction

The goal of remote sensing is to analyze or measure physical quantity of an object or phenomenon without
physical contact. Especially, the most commonly used information in the remote sensing applications is the spectral
information which can be corrected by receiving the reflected or direct radiation from objects. The radiometric in-
formation corrected by the sensor is distorted by the sensor characteristic and atmosphere (Schowengerdt (2006)).
Therefore, the radiometric correction consists of the sensor calibration and atmospheric correction. The sensor cali-
bration deal with finding the relation between the digital number stored at each image pixel with the recorded signal.
Particularly, the gain and offset of the sensor are estimated in sensor calibration in order to convert digital number at
the pixel (x,y) i.e., DN = I(x,y) to the radiance value:

Rs=g-DN+of fset = gl(z,y) + of fset. (1)
The atmospheric correction is the process to transfer the at-sensor radiance to radiance at the earth’s surface:
Ry =TR+ Ry, 2)

where 7 is the view path transmittance and R, the path radiance. The path radiance is the from the atmospheric
scattering.

Field server is an equipment used for monitoring the rice’s growing state. The primary data is the RGB
image which is used for computing the vegetation index. The rice growing state can then be monitored by using
the vegetation index’s time series. Similar to the vegetation index’s time series obtained from satellite imagery, the
time series are fluctuated according to the radiometric distortion. The source of distortion is especially from the
illumination change. In Figure 1, the effect of illumination change is illustrated. Therefore, in order to obtain more
accurate, vegetation index’s time series, the effect from illumination change must be removed similar to the case of
satellite imagery. That is, we seek to find the radiance at earth surface L in (2). In this work, we do not deal with the
sensor calibration in order to simplify the problem. However, the radiometric correction can be performed before the
installation of the field server. The recovery of reflectance at the ground surface is based on the concept of intrinsic
image decomposition. The decomposition technique only uses the image sequence with natural image statistics. The
advantage of this technique is that no physical parameter e.g., viewing angle is required. The application of the
intrinsic image for rice field monitoring will be demonstrated as the reduction of fluctuation in the vegetation index’s
time series which will help in the interpretation of the rice growing state.

The rest of this paper is organized as follow. The concept of intrinsic image and the decomposition technique
used in this work is reviewed in Section 2. The use of intrinsic image in the monitoring of the rice growing state will
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Figure 1: Effect of different illuminations on the rice field’s image. The image in Figure 1b was acquired one day
after.

be introduced in Section 3. In Section 4, the results from using intrinsic image for rice growing state monitoring will
be illustrated. The conclusion of this work will be discussed in Section 5.

2. Intrinsic images

The term “intrinsic image” was first introduced by Barrow and Tenenbaum (Barrow and Tenenbaum (1978)).
The concept of the intrinsic image is to decompose image into reflectance and illumination. That is, the image is
represented as the product between reflectance and illumination:

I(z,y) = L(z,y)R(z,y), 3

where I(z,y) is the input image, R(z,y) the reflectance image and L(z,y) the illumination image. The goal of
intrinsic image decomposition is to extract the reflectance image R(x,y) from the input image I(z,y). The decom-
position of (3) is ill-posed problem on its own because the number of unknowns is two times the number of equation.
The trivial solution for decomposing the above equation is to set L(x, y) = 1. However, this solution is not applicable
because the illumination effect is not removed from the image.

There have been efforts on decomposing the image into illumination and reflectance by exploiting the structure
in the image to reduce the number of unknowns. In (Shen et al. (2008)), Shen et al. took the texture information into
account in order to give constraints on reflectance among pixels. That is, texture information was used to regularize
the decomposition problem. Daniilidis et al. (Jiang et al. (2010)) proposed a new feature called local luminance
amplitude which was integrate with hue and texture to extract reflectance images. In (Rother et al. (2011)), Gehler et
al. used probabilistic approach to decompose the reflectance image i.e., conditional random field with the assumption
that the reflectance value for each pixel is drawn from some mixing components. In (Laffont et al. (2012)), Laffont et
al. used images taken from multiple view to reconstruct 3D points and normals which were used to derive relationships
between reflectance values at different locations.

In this work, the approach proposed by Weiss (Weiss (2001)) is adopted because only image sequence of a
static scene is required and the computation is not expensive. It made an assumption that the illumination variations
are sparse and can be approximated by Laplacian distribution. Moreover, the concept of this approach relies on the
temporal structure such that:

R(z,y,t) = R(z,y). 4)

That is, this approach assume that the camera is stationary and the reflectance of the scene does not change. However,
the problem is still ill-posed because the number of unknowns is reduced from 27" to T' 4 1, where 7' is the number
of equation. To obtain the solution, the problem is slightly changed to extracting the stationary background from the
image sequence.

By assuming that the camera is stationary, in general situation, an image of static background can be decom-
posed as:
i(z,y,t) = static background + dynamic foreground. (5)

In our case, the static background is referred to as the reflectance image and the dynamic foreground the illumi-
nation image. A popular approach for extracting the background is to use the (pixel-wise) median of the image
sequence:

static background = me(zian i(z,y,t). (6)
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Figure 2: The flow of the intrinsic image decomposition.

The concept of using median to extract the reflectance image can be applied by using the logarithm of (3) :

log(I(z,y,t)) = log(L(x,y,t)R(z,y,1)) @)
i(x,y,t) = U@y t)+r(@y) (- Ryt) = Rz,y)) ®
Another assumption is that the gradient of the illumination image are Laplacian distribution in time and space.

Let {f,} be a set of N filter. In this case, {f,} is the set of derivative filter i.e., the derivative in the vertical and
horizontal direction. The filter outputs are denoted by:

on(z,y,t) = foxi(z,y,t) ©))
= fox((z,y,t) +r(z,y)) (10
= I+ 11)

The maximum likelihood estimation of the reflectance image r,, can be obtained by using the median overtime:

?n (.Q?, y) = mectlian On (l’, Y, t) (12)

Once the filtered reflectance image 7, is computed. The reflectance image 7 can be obtained:

?-g*(Zﬂ;*ﬂL), (13)

where [ is the reverse filter of f, i.e., fn(x,y) = fi(—z,—y). The function g can be computed by solving the

equation:
g% (thn) =0 (14)

3. Rice field monitoring using intrinsic images

Assuming that the scene of rice paddy field is statics filed, the image sequences of the scene is used to extract
the intrinsic image following the technique presented in Section 2. As it is already mentioned, the sensor calibration
is not concerned in this work. This mean that the digital number DN is used as the radiance at the sensor i.e.,
Rs = DN = I(z,y), see (1). Since the field server is installed at the earth surface, the path radiance does not have
any effect. In other word, the radiance at the sensor is then:

I(z,y) = TR. (15)

The above radiometric distortion is analogous with the model used for intrinsic image decomposition (3). Namely, the
intrinsic image can be used as the estimation of the reflectance at the ground surface i.e., rice field. Given the image

sequence from the field server {I;} where j = 1,..., N, the reflectance on the j*" image I ; can be decomposed
following (12):
n(z,y) = median f, «log(I;(z,y)), (16)
J
where ¢ =% —w,...,7+ w and w is the parameter of the moving window with size 2w + 1. The reflectance can then

be recovered using (13). Once the intrinsic image is obtained, it is then used to compute the vegetation index.

In literature, there exists various vegetation indices. Some of them that can be computed using only RGB image
are presented in this Section. In (Guijarro et al. (2011)), Guijarro et al. utilized various indices in the segmentation
of agricultural images. Such indices include Excess Green (ExG), Excess Red (ExR), Excess Blue (ExB) and Excess
Green minus excess Red (ExGR). Given an image in the RGB color space, the computation of those indices starts
from the normalization of spectral red (R), green (G) and blue(B) components at a certain pixel:
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As a consequence, the normalized spectral r, g and b are in the range [0,1]. The indices are then computed as
following:

ExG = 29—r—1» (18)
ExR = 1l4r—g (19)
FExGR = FExzG — ExR. (20)

In (Woebbecke et al. (1993)), Woebbecke et al. used green and red bands to compute Normalized Difference Index
(NDI) for distinguishing plants from the soil:

qg—rT
g+r

NDI = 21
The aforementioned indices are very useful for segmenting vegetation on an image when only red, green and blue
spectral bands are available.

4. Experimental results

To test the performance of the proposed method, the images used were from two rice fields located in Suphan-
buri and Roi-Et provinces, Thailand. The image sequence from Suphanburi province consists of 81 days i.e., one
image per day; while that of Roi-Et province 105 images. The images were taken at 10 a.m. In Figure 3, the his-
tograms of horizontal derivative filter outputs using the image shown in Figure la is illustrated. It can be observed
that the filter response is sparse and its shape is similar to the Laplacian distribution. That is, the characteristics of the
rice field image satisfy the assumption of the algorithm used for decomposing the reflectance from the image.
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Figure 3: The histogram of horizontal derivative output using image shown in Figure 1a.

In this experiment, the size of moving window is 9 (w = 4). For example, the images from 16" to 24" days
were used to extracted the reflectance image for the image taken in 20" day. The example of decomposed reflectance
image is illustrated in Figure 4. It can be observed that obtain reflectance is blur especially on the rice field compared
to the original one. The reason is that the rice field is not static because of wind. The image in Figure 1a looks brighter
than the image in Figure 1b because the first one has less cloud. Namely, the rice field in the first image was more
illuminated and looked yellowish. As a result, the vegetation indices computed from the first image (Figure 1a is less
than from its true value. Note that the cloud is removed from the reflectance images. This means that the intrinsic
image decomposition can remove changes that are not purely due to lighting.

The reflectance image of each image in the sequence was extracted and used in the computation of vegetation
indices. The time series of vegetation indices from field server installed in Suphanburi and Roi-Et provinces are
illustrated in Figures 5 and 6, respectively. In those Figure, the ExG, EXGR and NDI are plotted. The time series
computed using image sequence without any pre-processing are fluctuated because of light changing. It can be
observed that the time series computed from decomposed reflectance images are much smoother as promise.

5. Discussion and conclusion

In this paper, we demonstrate the use of intrinsic image decomposition for rice growing state monitoring. The
intrinsic image is used as the estimation of reflectance at the earth surface which is the rice field in our case. As a
result, the vegetation indices can be obtained from the intrinsic image and the fluctuation in the vegetation indices
time series is reduced as promised. In the future work, the sensor calibration will be taken into account in order to
obtain the real reflectance from the rice field.



Figure 4: The reflectance image decomposed from the image shown in Figure 1a
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Figure 5: Vegetation index time series computed from images acquired by field server installed in Suphanburi
province. The time series obtained from image sequence without any pre-processing is plotted with dash line. The
time series computed from decomposed reflectance is plotted with solid line.
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Figure 6: Vegetation index time series computed from images acquired by field server installed in Roi-Et province.
The time series obtained from image sequence without any pre-processing is plotted with dash line. The time series
computed from decomposed reflectance is plotted with solid line.
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