A NOVEL GCP MATCHING MODEL FOR IMAGE GEOMETRIC CORRECTION BY BIOLOGICAL SEQUENCE ALGORITHMS
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ABSTRACT: The present study develops a novel partly automatic ground control point (GCP) matching model, which can resolve the problem of GCP matching when carrying out geometric correction for two digital aerial images (DAI). The study uses two DAIs taken at different periods as its cases. The first image is the base image, while the second image is the warp image. We first use the Needleman-Wunsch algorithm (NWA) as a global object alignment technique to match objects in the two images. After we have identified objects that can be successfully matched, we then use the Smith-Waterman algorithm (SWA) as a local features alignment technique to extract the GCPs of the successfully matched objects. At same times, we use the polynomial model method to carry out geometric correction and asses the merits of our model. Finally, the results show that appropriate GCPs can be automatically extracted from the images used in this study. Following geometric correction, the RMSE (Root-Mean-Square Error) value was 0.8611, appropriate for application on high-resolution images.
1.  INTRODUCTION
With the rapid development of remote sensing technology and comprehensive applications, remote sensing images, aerial photography (AP), digital aerial imagery (DAI) and other digital images have been widely applied to the spatial structure of land use change (Kuwari and Kaiser, 2011), agricultural water resource analysis (Lamb and Brown, 2001; Martínez et al. 2009), and earth resources monitoring (Chirouze et. al 2013). On the other hand, one-by-one manual identification of GCPs is a very time-consuming process. In recent years, a number of studies have focused on algorithms for GCP matching (Vincent and Laganiere, 2005) to reduce manpower requirements and increase matching precision. Coulolgner et al. (2002) introduced a new method to automatically identify GCPs in Radarsat images using a topographic database. Hong et al. (2004) propose a GCP extraction algorithm based on the geocoding process of a radar image that has serious geometric distortions. Jia (2005) developed image registration techniques and an automatic procedure for refining manually selected GCPs and improving the spatial correlation of the image. Cong et al. (2008) proposed the fuzzy-c means method to extract linear features in remote sensing image, and provided a method to automatically extract tie point pairs according to geographic characteristics. A review of the literature shows that the methods used to identify image conjugate points of two images can essentially be divided into two types: the feature-based matching algorithms (FBM) and area-based matching algorithms (ABM). The FBM method generally uses image recognition to extract features from the image (for example roads and rivers). The intersections of these line objects are the primary source for GCPs (Cong et al. 2008; Babbar et al. 2010). The ABM method uses image processing techniques (for example the moving window model) to extract features from the image, and then uses the spatial geometric distance between the center point of each object (such as Euclidean distance or city block distance) to judge the degree of similarity between each object and identify GCPs (Coulolgner et al., 2002; Babbar et al. 2010). However, the downside of the FBM approach is that identifying the location of GCPs is very time consuming. While the GCPs identified using the ABM approach had lower geometric accuracy, the ABM approach had the advantage of quick identification of GCPs locations (Babbar et al. 2010). Above previous literatures, if a hybrid object matching model that combines features from the ABM and FBM methods can be developed, this could offer the field of machine learning with an improved analytical approach. On this basis, this study hope developed a matching model based on the concepts outlined above that can achieve both the accuracy and ideal geometric matching.
This novel object matching model applied biological taxonomy. In genetics research, similar coding sequences of DNA have been used as a basis for the classification of species, producing numerous biological sequence algorithms (BSA) for coding sequences. These BSAs can be divided into pairwise alignment algorithms (Chen, et al. 2008; Saeed, et al. 2010) and multiple sequence alignment algorithms (Just, 2001; Elias and Isaac, 2006). Pairwise alignment algorithms compare two sequences to find the corresponding position for similar amino acids. The two most commonly used pairwise alignment algorithms are the Needleman-Wunsch algorithm (NWA) and the Smith-Waterman algorithm (SWA) (Needleman and Wunsch, 1970; Smith and Waterman, 1981). More specifically, the NWA and SWA represent global and local alignment algorithms, respectively. Global alignment algorithms attempt to align sequences over their entire length, while local alignment algorithms concentrate on discovering and aligning only the conserved motifs. NWA and SWA have been applied to analyze potential relationships among sequences in areas such as biology and bioinformatics (Needleman and Wunsch, 1970; Waterman, 1984), customer retention (Prinzie and Poel, 2006), medical diagnosis (Wolff, 2006), eye tracking (Day, 2010), and communication (Holmes, 1997).

The basic principle of pairwise alignment algorithms is similar to the concept of GCP matching of similar objects. This approach allow for the identification of data that can be matched across two large databases. If our study can successfully express surface objects using a coding sequence, the concept of BSA then can be adopted into GCP matching procedures. Therefore, the BSA analysis in this study was applied in two steps. The first step was to establish a global object alignment model. The similarity of objects was matched in this step. The second step was to establishing the local feature alignment model. In this step, the GCPs were extracted from the successfully matched objects. In the first step, the shapes of objects were represented by the chain code method and the generated sequences of lengths were used as object signatures. This concept was identical to the DNA coding sequences found in genetics. The NWA was used in this step for global object matching. The numerical model of Gray Level Co-Occurrence Matrixes (GLCM) was also used to describe the internal form of different objects. In the second step, combine the results of above procedures to assess if the matching is accurate. The SWA method was applied in the second step to compare the chain codes of objects extracted in the first step, identifying identical locations from the sequences to match shared GCPs, completing automated GCP matching. 

The two objectives of this study are: 1. Develop a new automatic GCP matching procedure to solve the difficulty in DAI geometric correction. This study introduced a new method for the automatic matching of GCPs between base image and warp image. This method automatically extracts tie point pairs from heterogeneous images according to geographic characteristics. 2. Evaluate the suitability of extracted objects using the proposed procedure. This study used NWA to compare the similarity of surface objects from two images, and then the SWA was used to extract a certain number of GCPs from successfully matched objects. On the other hand, the ArcGIS software 2D first-order polynomial functions (6 parameters) was used later to conduct image geometric correction for automatically matched GCPs. Finally, we discussed on the proposed method, object categories, number of GCPs, spatial distribution of GCPs, and correction results were included in this paper by error vector map and root mean square error (RMSE).
2.  MATERIAL AND ATUDY AREA
The study area was located in the Nantun District of Taichung City, Taiwan. The images used in the study were taken from a model BN2B-20 aircraft, which can reach a flying height of 6,000 meters and can take images of the entire plains and mountainous areas of Taiwan. The base image with geometric correction (Figure 1a) was taken on January 9, 2007. The image size of the base image was 2875*2260 pixels. The warp image with no coordinates (Figure 1b) was obtained from GeoForce Technologies Co., Ltd (GeoForce, 2013) and taken on June 28, 2009. The image size of the warp image was 3299*2580 pixels. The images included information about objects, such as buildings, roads, and farmland. Information about the features of each object was also provided, which was used for the object matching in this research.
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(a)                                                                                (b)
Figure 1. Digital aerial imagery study materials: (a) Base image and (b) Warp image
3.  METHODS
The methods of image processing, global object alignment, local feature alignment, and image correction and evaluation were described below.

3.1 Image preprocessing

3.1.1 Image binarization procedure

The image binarization procedure was carried out as follows. First, the base and wrap images were converted into BMP format. At the same time, the imagery information was converted into binary format. Second, two spectral bands of R and G were utilized to analyze the different pixel values. These different values were used as the data source for extracting objects from the images. Third, the global threshold was used to separate objects and background information from the image (Schowengerdt, 1998; Sauvola and PietikaKinen, 2000). 
3.1.2 Description of objects using chain codes

An arbitrary geometric curve can be represented by a sequence of small vectors of unit length and a limited set of possible directions (Freeman, 1961). The geometric configurations of each object were encoded by Rook’s search model (0: North, 1: East, 2: South, 3: West) for global alignment methods. The moving window (MV) concept was applied to detect the object edge and generate the codes of object’s edge curve.

3.2 Global alignment for objects extraction by the Needleman-Wunsch algorithm

3.2.1 The Needleman-Wunsch algorithm method

The Needleman-Wunsch algorithm (NWA) method (Kim et al., 2006a; Kim et al., 2006b) was used to perform a global alignment of two sequences. It is commonly used in bioinformatics to align protein or nucleotide sequences. However, in this study, the chain code of object is similar as sequential data. Therefore, NWA can be used to compare the similarity between two sequences of chain code from the base and wrap images.

The NWA can be divided into three steps: the initialization, the scoring, and the trace back phases (Needleman and Wunsch, 1970; Waterman, 1984).

Step 1: The initialization phase: a matrix F indexed by two sequences Xn and Ym is constructed. The initial value for the matrix is given as: F(0, 0) = 0, F(i, 0) = i*d and F(0, j) = j*d, where d represents the gap penalty that is incurred if there is no possible match between the two sequences. The i and j represent the indices for the matrix F. 
Step 2: The scoring phase: In this step, NWA must set up a scoring schema, S, which is used for assigning scores for different two-character alignment scenarios. For example, a scoring schema rule can be defined by the user as follows:

Rule 1: If xm=yn, s(xm, yn)=8. 

This denotes that when the aligning characters match, 8 is attained.  

Rule 2: If xm
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yn, s(xm, yn)=−8. 

This denotes that when the aligning characters mismatch, −8 is attained.

Rule 3: If s(_, yn)=s(xm, _)=−8

This denotes that when one character is aligned with an inserted gap, −8 is attained. This score is also called gap penalty.

After applying the initial matrix and scoring schema, the algorithm proceeds to fill the matrix, starting from the upper left corner to the bottom right corner. To find the maximum score of each cell F(i, j), it is necessary to know the neighboring scores (diagonal, left, and right) from the current position. The maximum score of F(i, j) is given as


                                                                                               (1)
where the value F(i - 1, j - 1) + S(Xi, Yj) is obtained if xi aligns with yj; F(i - 1, j) + d is obtained if xi is aligned to a gap; and F(i, j - 1) + d is obtained if yi is aligned to a gap. S(Xi, Yj) is the scoring schema which is used for substitution score for residues i and j, and d is the gap penalty. Typically, each exact match gets a positive score, each mismatch gets a penalty of _s, where _s is the score retrieved from the substitution matrix, -1 and each gap, representing an insertion or deletion in one of the two sequences, gets a penalty of _d.
Step 3: The trace back phase: As the matrix F is filled, the actual alignment between the sequences Xn and Ym is constructed. The trace back phase is initiated at the last cell F(n, m) in the matrix. At each step the algorithm backtracks from the current cell (i, j) to one of the cells (i -1, j - 1), (i - 1, j) or (i, j-1) depending on the cell from which the value F(i, j) was derived. Based on the backtracking, a pair of symbols is added onto the front of the current alignment. The final step in the algorithm is the trace back for the best alignment. If there are two or more values which point back, this suggests that there may be two or more possible alignments. By continuing the trace back, one would reach to the 0th row, 0th column. Following the described steps, alignment of two sample sequences can be found. The best alignment can be identified by using the maximum alignment score. 

3.2.2 Ancillary color and texture information
Objects are constituted of both external (shape) and internal (texture) features. Color (R, G, B) and texture are important features used in identifying regions of interest in an image. The external (shape) of the object is described using the chain code. The internal (texture) features can be described using the grey level co-occurrence matrices (GLCM), also known as the gray-level spatial dependence matrices. In this study, the GLCM of textural features was used as an image analysis technique. Given an image composed of pixels, each with its own intensity (a specific gray level), the GLCM is a tabulation of how often different combinations of gray levels co-occur in an image or image section. 

3.3 Local alignment for GCPs matching procedure by SWA

Local sequence alignment algorithms were used to find the most similar aligning segments of two sequences with the highest density of matches. The SWA is a local alignment algorithm which is derived from the NWA with some modifications. SWA was developed by Smith and Waterman (1981) and enhanced by Gotoh (1982), and is the most commonly used local sequence alignment method. Unlike NWA, SWA requires a gap penalty to work correctly.

The alignment of two sequences of SWA is based on the computation of an alignment matrix. The number of its columns and rows is given by the number of the residues in the query and database sequences, respectively. The computation is based on a substitution matrix and on a gap-penalty function. The main difference to the NWA is that the negative scoring matrix cells are set to zero, which renders the (thus positively scoring) local alignments visible. Backtracking starts at the highest scoring matrix cell and proceeds until a cell with score zero is encountered, yielding the highest scoring local alignment. A matrix H is built as follows:
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where F(i, j) = score of matrix element i and j; d = gap penalty defined by users; and S(Xi, Yj) = score of matching xi with yj.
This study uses the SWA method to identify the locations of aligning character sequences for successfully matched candidate objects. For warp images, the successfully matched character sequences was set as a source of GCP candidate positions and the geographic coordinate parameters was assigned to them. This study used the image coordinates from the start of each aligned character sequence as the source for GCPs, although all characters from successfully aligned character strings can be used as GCPs. The advantage of this procedure is that the selection of GCPs is not restricted to the traditional object features. When using SWA to analyze the successfully matched objects, the shared sequences from two identical objects were used as a source of GCPs, and to preform geometric correction. 

3.4 Image correction and evaluation

3.4.1 Image geometric correction processing

In this study, the mapping functions were assumed to be polynomial functions and their coefficients were estimated using a number of sets of known features on the reference image and GCPs. Because the distortion effects of wrap image were not large in this case, the 2D polynomial function model of first order (6 parameters) was used to perform geometric correction (image rectification) and to model the feature relationship using ArcGIS 10.0 polynomial correction produces. The 2D polynomial function model allows for correcting by means of a translation along both axes, a rotation, scaling along both axes, and an obliquitous transformation in the image geometric correction processing.

3.4.2 Accurate evaluation of geometric correction

In order to determine the efficiency of the proposed method, accuracy of geometric correction experiments were conducted with the dataset from this study. The positional accuracy of the geometric correction refers to the accuracy of the geometrically rectified image. Hold-out validation is a widely used method for accuracy assessment (Babbar et al., 2010). This method divides the dataset into two subsets: the GCPs on base image are used to rectify the image and the VPs on warp image to validate the accuracy of the correction (Wang et al., 2012). In this study, the root mean square error (RMSE) index of the GCPs was used to assess the accuracy of geometric correction.
4. RESULT AND DISCUSSION
4.1 Results of candidate objects matching procedure through NWA
This study used Rook’s search model chain code analysis on candidate objects to obtain the object’s edge. At this point, the NWA model can be applied to match the objects extracted from the two image types. Essentially, Rook’s search model is a simplified problem representation approach. However, NWA analysis is still unable to fully describe object matching information. Therefore, it is necessary to also include inter ancillary information. This approach proceeds as follows: first, the maximum matching number obtained through the NWA scoring schema is used as the first indicator to judge object matching (this refers to the object shape). Next, the smallest value of GLCM and spectral mean deviation for all objects is used as the second indicator of object matching (this refers to object color and texture). This process also compares loop sequences between objects. In this case, the manual selection is needed to discriminate between the objects. After the manual selection, total of 11 objects are left and these are the buildings as shown in Table 1. Table 1: Successfully matched objects (number) and extracted GCPs (points).
4.1 Results of candidate GCPs extraction through SWA

After applying NEA, the SWA algorithm was used to align the chain codes of matched objects and identify the GCPs. The chain codes were divided into sections based on the gaps filled by the NWA algorithm. However, two chain codes of the same object were not divided in exactly the same way. Therefore, the chain codes longer than 5 characters were used as the source of GCP information. Finally, the starting point coordinate of the first chain code
Table 1: Successfully matched objects (number) and extracted GCPs (points)
	Serial number
	1
	2
	3
	4
	5
	6

	Object maching result
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	Automatically extraction GCPs by SWA 
	4
	5
	3
	2
	4
	9

	Manual selected GCPs by RMSE
	3
	0
	1
	0
	2
	5

	Serial number
	7
	8
	9
	10
	11
	Totally

	Object maching result
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	Automatically extraction GCPs by SWA 
	5
	9
	5
	4
	5
	55

	Manual selected GCPs by RMSE
	2
	0
	1
	3
	3
	20


position for each section was used as a GCP candidate point, obtaining 2, 2, and 3 as the three local area GCP positions.  Therefore, three GCPs were obtained and used for geometric correction. Same procedures were repeated for other objects in Table 1, and the GCPs were determined for all matched objects (the lower box in Table 1).

There were 55 GCPS selected from the 11 matched objects using NWA (Figure 2 and Table 1). The content structure of the 55 GCPS was different to those selected manually by the traditional method. When selecting GCPs manually, more obvious or unique objects were selected, such as the road intersections, the confluence of streams, unique terrain, the edge of lakes, and the edge of cities (Lillesand et al., 2008). Figure 2 and Table 1 show that the matching process of chain codes was not restricted to specific features that can be identified by human eyes. These positions that appear suitable for matching are not necessarily suitable GCPs, and may even result in larger geometric deviations.  While this study is able to obtain a significant number of GCPs from the images, due to the large number of GCPs produced, we refer to these positions as candidate GCPs.  The next stage is to assess whether these candidate GCPs can be used for the general geometric correction.
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Figure 2. Distribution map of object GCPs (55 GCPs)
4.4 Results of geometric correction and VPs accuracy evaluation 

Geometric correction based on the 55 candidate GCPs was performed using ArcGIS. The result shows the RMSE equal to 19.7437. However, the RMSE is quite high, possibly due to the matching mistakes from automatically selected GCPs. Total of 35 GCPs with residual values greater than 1.0 were removed from the GCP list. The RMSE reduced from 19.7437 to 0.8611 after perform the geometric correction again, as shown in Figure 3(a). The distributions of the final 20 GCPs are shown in Figure 3(b) and Table 1. The post-geometric correction images are shown in Figure 3(c), and the residual vectors are shown in the Figure 3(d). Returning to the research findings above, as the automatic GCP extraction process described above produced some residuals that are too large, after further examination of this issue, we found that the traditional concept of point matching is one-to-one, or finding common points from the same object. However, the analytical process used in this study may produce sequence matching, i.e. one-to-many matching. In other words, the values of certain segments of base image sequences may appear more than once in the warp image sequences and can be matched successfully. Although design constraints were included in the research meaning that matching sequences that occurred more than twice were removed, it is still possible that incorrect matching positions are identified. This issue could be related to the chain code complexity and distinguishability. It is expected to have better matching results if the complexity of chain code increases. However, the present analysis still requires manual evaluation to improve the quality of the results. After removing questionable points, the remaining GCPs provided considerably accurate and suitable points for the geometric correction.
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(c)                                                                      (d)
Figure 3. Modify results for geometric correction procedure. 

(a). The 20 selected GCPs were proceeding geometric correction in ARCGIS.

(b). The 20 GCPs position by SWA in base image (•: GCPs).

(c). Modify results of geometric correction.

(d). The residual error vectors map.
5. CONCLUSION
Conclusions from the study are described as below. 

1. This study successfully developed a hybrid model for extracting GCPs based on the NWA+SWA methods. This method combines ABM and FBM-based GCP extraction, and is applied to automated image object matching and GCP extraction. The new method is able to combine the surface features of objects and the features of GCPs, as well as the information, such as the object shape, spectrum, and texture. This information is useful for the automated computer-based identification process, and provides a solution to the lower accuracy of the ABM approach and the difficulty of automated computer-based matching when only using the FBM approach.  

2. In the study, the 55 GCPs and GCPs obtained by traditional manual extraction were structurally different. Computer-based selection of GCPs may result in many instances of false matching, due to the possible one-to-many sequence matching. This issue is related to the complexity of chain code. If the complexity of chain code was changed to at least an 8-way code, the false matching should be reduced.

3. The points with an RMSE value greater than 1 were removed in the procedure. The result of image correction quality was satisfactory.  
4. Although the purpose of this study was to develop a fully automated object matching model, in some cases, manual intervention is still necessary, in particular to ensure the accuracy of object matching. The object identification by eyes is still superior to the computer-based alternative when the object is not clear. Therefore, increasing the accuracy of object description (e.g., object scaling and rotation) or separating different object types before applying the matching procedure are the topics in the future. This study had showed the potential of applying the NWA and SWA hybrid model for image geometric correction. 
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