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ABSTRACT: Non-metric digital cameras have recently gained their increasing popularity in photogrammetric 

applications. To achieve quality performance, the interior camera parameters, among others, are of great concern. 

Camera calibration is designed to determine interior orientation parameters for effectively refining the image point 

so that object-to-image correspondence under collinearity property can be well justified. There are, however, some 

situations where camera calibration, especially for zoom-dependent cameras, is hard or impossible to operate. 

Therefore, alternative ways of supplying interior orientation parameters must be considered. This study employed 

correction models, instead of actual calibration, to determine the general interior orientation parameters. The 

recorded calibrated data sets of the very same camera on different principal distances would serve as database and 

the parameters of correction models that fit the camera information of metadata to equivalent or nearly equivalent 

calibration are to be determined. The alternative way of offering image point refinement developed in this study 

would actually support more photogrammetric mapping tasks that were once considered troublesome to tackle.  

 

1. INTRODUCTION 

 

Non-metric digital cameras with low cost and easily accessible convenience have recently gained their increasing 

popularity in photogrammetric applications. Yet, the operational instability of interior orientation parameters is of 

great concern (Läbe and Förstner, 2004). To achieve quality performance, camera calibration is designed to 

determine interior orientation parameters for effectively refining the image point so that object-to-image 

correspondence under collinearity property can be well justified. Images may be acquired in some situations where 

camera calibration, especially for zoom-dependent cameras, is hard or impossible to operate. For a zoom-dependent 

camera, it is very difficult, if not impossible, to duplicate the principal distance in the camera calibration laboratory 

as it was used during image acquisition. The principal distance recorded in the header of image can be only 

regarded as approximate. Therefore, alternative ways of supplying interior orientation parameters with sufficient 

quality are indeed in demand taking the afore-mentioned conditions into consideration. This study adopted 

correction models proposed in Fraser and Al-Ajlouni (2006) to determine the general interior orientation parameters 

when permitted no actual camera calibration. The recorded calibrated data sets of the very same camera on different 

principal distances would serve as database and the parameters of correction models that fit the camera information 

of metadata to equivalent or nearly equivalent calibration are to be determined. The applicability of offering image 

point refinement developed in this study has been demonstrated in this work through the preliminary tests.  

 

2. METHOD 



 

2.1 Image Point Refinement Based on Collinearity Condition  

Imaging geometry of perspective projection can be well explained by the collinearity condition where the image 

point, the perspective center, and the associated object point lie on a same line (Mikhail et al., 2001). However, 

considering the real imaging scenario where lens distortion, sensing element misalignment. and atmospheric 

refraction would bent the imaging rays and the original of the photo coordinate system and the principal distance 

are left to be precisely determined, image point refinement is crucial to a quality image-to-object correspondence. A 

typical formula commonly applied in photogrammetric image refinement can be seen in Eq.(1) where the principal 

point offset, the correction s of both radial and decentering lens distortions, and film or sensing element distortion 

are added to the coordinates of the actual image point, allowing a realization of collinearity property (Wolf and 

Dewitt, 2000).  
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where x0, y0 are the principal point offset; 0x x x


  , 0y y y


   with x,y the image coordinates; r is the point 

distance to the origin; K1~K3 are the coefficients of radial distortion, P1, P2 are the coefficients of decentering 

distortion, b1, b2 are coefficients of film shrinkage or sensing element distortion. The parameters shown in Eq.(1) 

together with the principal distance are normally obtained through camera calibration procedures and applied to 

refine image point coordinates. When the camera calibration is not possible or hard to operate, the alternative way 

of getting parameters for image point refinement is to refer to the approximate principal distance given in image 

header and conduct fitting algorithms using the results of those calibrated principal distances, as detailed in the 

following paragraph.  

 

2.2 Fitting Functions for Interior Orientation and Lens Parameters  

 

The refinement proposed in Fraser and Al-Ajlouni (2006) can be seen in Eq.(2) where only K1 is considered for 

radial distortion while neglecting decentering distortion. Eq.(3) requires estimating the coefficients of a0, a1 , b0 , b1, 

b2, b3 , d0, and d1 before f, x0, y0 and K1 can be derived. Based on the mathematical model with separated parameters 

to linear (or unlinear) of polynomial equations where the effect of K2, K3, P1, P2 are tiny to ignore them (Fraser and 

Al-Ajlouni, 2006) can be seen in Eq.(2).  

 

2
0

2
0

2

2
100

2
100

)()(

)(

)(

yyxxrwith

rKyyyyy

rKxxxxx

a

a













  

                                                        (2) 















2
101

320100

10

;

d

h

fddK

fbbyfbbx

faaf

      (3) 

where fh is the principal distance recorded in the header of image; a0, a1 are the coefficients of linear model for 



principal distance; b0~b3 the coefficients of linear models of principal point offset; d0,d1,d2 the coefficients of radial 

distortion model (d2 is between -3.1 and -0.2). To increase both the flexibility and quality of refinement models, this 

study has considered K2, P1  and P2 and integrated them into the fitting models and image refinement as shown in 

Eqs.(4) and (5), respectively.. It is evident that two data of the associated parameter is minimally required to 

determine the model coefficients.  
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It is quite often to have more than two data for estimating the targeted parameters. Least-squares adjustment can be 

a well justified tool for parameter estimations. In addition, calibrated parameters are usually associated with their 

quality, say standard deviations. Therefore, a weighted least-squares adjustment for fitting interior orientation and 

lens distortion parameters, as modeled in Eqs.(6) and (7), features the significance of this study.  
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where A is design matrix whose elements are gained from taking partial derivatives with respect to unknown 

parameters; ξ is the vector of unknown parameters; e is the vector of observed errors, w is the discrepant vector of 

observed equations; Σ is the dispersion matrix of observations; σ0
2 is variance component; 12

0
P is the weight 

matrix. 

Then, the least-squares adjusted parameter vector ̂ , and the residual vector e~ , the a posteriori variance component

2
0̂ , and the posterior variance and covariance matrix of parameters

̂
̂  can be seen in Eq.(7). 























-1

-1

) 

) 

PAA

fod

ePe

Awe

PwAPAA

T

T

TT

(ˆˆ

...

~~
ˆ

ˆ~

)((ˆ

2
0ˆ

2
0











  (7) 

 

2.3 Data validation 

 

Choosing any principal distance in zoom-ring to implement camera calibration and using the correction model to fit 

all interior orientation parameters. Finally, comparing both of them, by discussing the parameters of the quantity 

and image point refinement to determine whether the correction models can support this study. 

 

3. EXPERIMETAL EVALUATION 

 

The experiment now uses camera of Nikon D80 at five focal settings (18/24/35/45/55mm) to collect their 



calibration of images. The I.O model can fit out the 20mm principal distance recorded in the header of image, then 

compare the interior orientations with camera calibration by Photomodeler. The camera figures shown in Tables 1. 

 

Tables 1. Camera specification of Nikon D80 

Camera 

 

Zoom lens 

 

Sensor pixels 10,750,000pixels Effective Pixels 10,200,000 pixels 

Sensor size 23.6 x 15.8mm Sensor type CCD 

Maximum Pixels 3872 x 2592   

 

3.1 Experimental result 

 

Because of data on hand is limited, now discussing two cases, one is using two different principal distances for 

18mm and 24mm (sum=31), the other is using five principal distances for 18/24/35/45/55mm (sum=5). By linear 

indirect observation fitting unknown coefficients of each interior orientation parameters, then give the recorded 

principal distances in image header (20mm) to obtain all parameters. Shown in Table.2 are two cases of principal 

distance of fitting result in figures (blue one is ordinal observed values, red one is fitted principal distances). 

 

Tables 2. Two cases of fitting result 

 Case1: No.1~31 (18/24mm) Case2: No.1~5 (18/24/35/45/55mm) 

Fitting 

result 

  

Fitting 

result 

(zoom-

out) 

  



 

The fitting results are shown in Table.3 first row. Assume the second row is most probable value, the averages result 

of 20mm principal distance calibrations between 2014/07/09 and 07/15 and compare their diff values in third row. 

 

Table.3 Differences between fitting result of linear and practical principal distance 

 (case1:with 18mm(16)&24mm(15) / case2: with 18(1)&24(1)&35(1)&45(1)&55mm) 

row  Input data f X0 Y0 K1 K2 P1 P2 

i 
Coefficient 

of fitting 

Case1: (18/24mm) 20.4465 11.9754 7.9999 2.7272e-04 -2.6710E-07 -8.8628E-06 3.0306E-05 

Case2: (18/24/35/45/55mm) 20.4737 11.9652 7.9958 1.7978e-04 -1.9417e-07 -1.0439e-05 2.3524e-05 

ii Practical interior orientation of average 20.5945 11.9748 8.0098 2.3338E-04 -2.1648E-07 -1.1960E-05 2.8370E-05 

iii Diff values 

Case1: (18/24mm) -0.1480 0.0006 -0.0099 3.9340E-05 -5.0620E-08 3.0972E-06 1.9360E-06 

Case2: (18/24/35/45/55mm) -0.1208 -0.0096 -0.0140 -5.3600E-05 2.2310E-08 1.5210E-06 -4.8460E-06 

 

Assume row iii are true value, in Table.3, show both two cases of residuals. Then, the fitting parameters of two 

cases are not more different from actual average parameters. But between case1 and case2 are not absolute better, 

maybe could try combine case1 and case2 to observe whether can obtain better results. Shown in Table.4 are using 

parameters of Table.3 to calculate the image point refinement including the maximum, minimum and mean. 

 

Table.4. Image point refinement of 20mm principal distance with add weight fitting and average actual principal distance (pixels)  

distortion 
20mm fitting principal distance of image point 

refinement by linear (case1) 

20mm fitting principal distance of image point 

refinement by linear (case2) 

20mm average practical principal distance of 

image point refinement 

radial  dx_rad dy_rad dx_rad dy_rad dx_rad dy_rad 

min ±0.000474 ±0.000492 ±0.000358 ±0.000359 ±0.000386 ±0.000377 

max ±82.886197 ±56.590414 ±53.374597 ±36.428687 ±71.809249 ±48.964609 

mean ±20.627525 ±12.258953 ±13.428483 ±7.988370 ±17.765910 ±10.551638 

decentering  dx_tan dy_tan dx_tan dy_tan dx_tan dy_tan 

min ±0.000058 ±0.000531 ±0.000028 ±0.000398 ±0.000039 ±0.000420 

max ±1.539539 ±1.825022 ±1.465425 ±0.000398 ±1.719562 ±1.813013 

mean ±0.278897 ±0.536205 ±0.27469 ±0.416201 ±0.318590 ±0.501879 

Radial distortion 

   



Decentering distortion 

   

 

3.3 Analysis Conclusion 

 

This camera’ zoom lens original has no 20mm principal distance of setting. If the photogrammetric field is hard to 

finish calibration by the zoom lens settings, then can use the correction model to recover approximate 20mm 

principal distance of interior orientation parameters. Shown in Table.3 where the results of fitting parameters that 

can preliminarily finish initial target and the parameters of case is better than case1. Next, shown in Table.4 of two 

cases’ average refinements, residuals of refinement event are small (about 3~10 pixels), it means the fitting is 

efficient. Sum of all, case1-single range with more datum and case2-more principal distances with single data, they 

reflect the parameters aren’t absolute better fitting in the same case. Besides, the benefit of decentering distortion is 

better than radial distortions. If we want to raise their accuracy of the correction model to fit, must consider 

quadratic or polynomial equation to obtain more nearly equivalent interior orientation parameters.  
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