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ABSTRACT 

Scaling transformation is one of the basic and important scientific questions in quantitative remote sensing. This 

study proposed a leaf area index (LAI) scaling transfer model based on fractal theory for computing LAIs at 

different scales (spatial resolution). Based on scale invariance and self-similarity of remote sensing images in a 

statistical sense, the LAI scaling transfer model was developed by establishing the double logarithmic linear 

relationship between the scale n and the average LAIs of the image at different scales. The influence of the standard 

deviation of the image on the scaling transfer model was also analyzed. The results showed that the average LAIs of 

the image at different scales were well calculated by the scaling transfer model with an absolute percent error (APE) 

value of 0.27% and a root mean square error (RMSE) value of 0.0129. The fractal dimension of the image, the 

parameter of the scaling transfer model, increased as the standard deviation increased. This study suggests that the 

proposed method of LAI spatial scaling transformation based on fractal theory is feasible. 

 

1. INTRODUCTION 

 

Scale issue is not only associated with these subjects, such as mathematics, computer science, signal 

processing and ecology, but also one of the most essential and difficult questions in the field of remote sensing 

(Silvestri et al., 2002). As one of the important surface parameters that can be inverted using remote sensing data, 

the leaf area index (LAI) is a key player within a broad range of land surface models including vegetation, 

biogeochemical or global atmospheric circulation models, which necessitate the improvement and assessment of the 

accuracy of LAI estimation. The scale effect of LAI inversion using remote sensing has been extensively examined, 

focusing on describing the phenomenon, analyzing the causes and establishing the scale transformation 

relationships. Establishing the transformation relationship among the inversion LAIs at different scales, namely 

scale transformation, is an effective method that resolves the scale effect in quantitative remote sensing. For 

quantitative description of scale transformation of inversion LAI, the linear or non-linear transformation 

relationships among LAIs at different scales were established with statistical analytical methods (Liang et al., 2002; 

Garrigues et al., 2006; Jin et al., 2007). However, a large number of sample data are needed and there is no clear 

physical significance of the parameters in these models, leading to the limited applicability of the transformation. 

Therefore, with the advancement of quantitative remote sensing theory, some scholars used physical models to 

deduce the LAI scale transformation law by analyzing the biophysical mechanism associated with the scale effect 

(Xu et al., 2009). Mathematical methods are also used to study the spatial scale transformation of LAI, besides 

statistical analytical methods and mechanism models. As one of classical methods of scale transformation, fractal 

can quantitatively describe the evolution law of study objects at different scales (Luan et al., 2013). Li et al (1999) 

proposed that fractal (or similar fractal) relationship is one of the three types of scale transformation tendency that 

can reflect the scale effect when physical law, theorem and model are applied in remote sensing. This paper 
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proposed a fractal-dimension-based LAI spatial scale transfer model for the calculation of and transformation 

among LAIs at different scales. 

 

2. MATERIALS AND METHODS 

 

2.1. Materials 

 

The study area is located in the suburb of Changchun city, Jilin Province, China, which is situated in the 

Northeastern Plain and the terrain is rather flat (Fig. 1). The CCD image (the spatial resolution: 30m) obtained from 

the Environment and Disaster Reduction Small Satellites was adopted in this paper. The study area is mainly 

covered by farmland and sparsely distributed buildings, roads, water bodies and such. 

 

Figure 1 Location and CCD image of the study area in Changchun, Jilin Province, China. 

 

This paper used Normalized Difference Vegetation Index (NDVI) to invert LAI. An empirical transfer 

function f (Eq. (1)) is established using the NDVIs derived from the CCD image and the measured LAIs to generate 

the LAI map using the CCD image. 
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2.2. Methods 

 

There are two up-scaling methods of LAI inversion. The exact value of the LAI (LAI
exa

) at the coarser spatial 

resolution is obtained by first applying f to the vegetation index (VIi) at the high spatial resolution to calculate the 

corresponding LAI value (LAIi) and then by aggregating the results of LAIi (path 1). The approximated value of the 

LAI (LAI
app

) at the coarser spatial resolution is obtained by first aggregating the result of VIi (VIm) at the high 

spatial resolution and then by applying f to VIm at the coarser spatial resolution (path 2). Because of both the 

nonlinearity of f and the spatial heterogeneity of the coarser spatial resolution pixel, the difference between LAI
exa

 

and LAI
app

 at each scale is defined as scaling bias. This study proposed a LAI scaling transfer model based on the 

fractal theory for computing LAIs at different scales. 

 

2.2.1. The average LAI of the image calculation 

 

On the assumption that the size of a remote sensing image is N*N pixels (N is required to be a composite 

number) and n is the divisor of N, n*n pixels were aggregated as a pixel at scale n to ensure that all pixels of the 



image were aggregated when the average LAI of the image was computed. The number of aggregated pixels at 

scale n is (N/n)
2
. The spatial resolution of the image reduced, which is the up scaling process. Take the CCD image 

with the size of 512*512 pixels used in this study for example, the transfer scales n include 2, 4, 8, 16, 32, 64, 128, 

256 and 512, and the corresponding coarser spatial resolutions are 60m, 120m, 240m, 480m, 960m, 1.92km, 

3.84km, 7.68km and 15.36km respectively. This amounts to computing the NDVI of the jth pixel at scale n (NDVI
app 

n,j ) as the average of the high spatial resolution NDVI values NDVIi : 
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where n
2
 is the number of 30 m high resolution pixels within the aggregated pixel (scale n). NDVIi is the 

NDVI value of the ith pixel at the high resolution. The application of f to NDVI
app 

n,j  leads to an approximated LAI 

value of the jth pixel LAI
app 

n,j : 
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The approximated value LAI
app 

n  of the whole image at scale n is computed by aggregating all LAI
app 

n,j : 
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Similarly, The exact LAI value LAI
exa 

n,j  of the jth pixel at the coarser spatial resolution n*30 m is computed by 

first applying f to n
2
 NDVIi at the high spatial resolution and then by aggregating the results of the corresponding 

LAIi (Eq. (5)) at the coarser spatial resolution. The exact value LAI
exa 

n  of the whole image at the coarser spatial 

resolution is computed by aggregating all LAI
exa 

n,j  (Eq. (6)). 
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As shown in Eq. (6), LAI
exa 

n  is independent of scale n, which means LAI
exa 

n  at any scale are the same. In 

addition, the number of aggregated pixels at the coarser spatial resolution 1*30 m is equal to the number of pixels at 

the high resolution, indicating that LAI
app 

1  is the same with LAI
exa 

1  (Eq. (7)). 
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Eq. (6) and (7) combined show that LAI
app 

1  equals the LAI
exa 

n  at any scale. Therefore, the scaling bias between 

LAI
exa 

n  and LAI
app 

n  at the scale n could be translated into the difference between LAI
app 

1  and LAI
app 

n  at the scale n, 

which could be obtained by quantitatively describing the transformation law of LAI
app 

n  with the scale n changing. 



The LAI
ratio 

n  proposed in Zhang et al (2010) was computed for analyzing and comparing the accuracy of the 

LAI scaling transfer model established in this paper: 
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2.2.2. Scaling transfer model 

 

The remote sensing images with different spatial resolutions possess the scale invariance and self-similarity 

characteristic (Penland et al., 1996; Zhang et al., 2010). Scale invariance and self-similarity are the basis of Fractal 

geometry found by Mandelbrot (Mandelbrot, 1975), and hence fractal theory could be used to study the scale bias 

of quantitative remote sensing products. 

According to the definition of fractal dimension, the measurements and scales are power correlated when 

different scales are applied to measure the study object with fractal characteristic, which means LAI
app 

n  have a 

power-law dependence at the scale n in this study (Eq. (9)). The scaling transfer model is established by applying a 

log transformation on both sides of Eq. (9) (Eq. (10)). The fractal dimension D of the image is approximated by Eq. 

(11): 
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3. RESULTS 

 

3.1. Scaling transfer model 

 

As shown in Fig. 2a, LAI
app 

n  at each scale and scale n are double logarithmic linear correlated with R
2
 over 

96%, which further indicated that the quantitative remote sensing products possess the fractal characteristic. The 

dimension fractal of the image (D=2.0088) computed by the scaling transfer model is basically consistent with that 

(D=2.0087) computed by the method proposed in Zhang et al (2010) (Fig. 2b). The LAI
app 

n  calculated with the 

scaling transfer model agree well with the ones calculated with the method of path 2 with an APE value of 0.27% 

and a RMSE value of 0.0129 respectively (Fig. 2c). It could be concluded that the LAI scaling transfer model 

proposed in this study is feasible. 

      



   

Figure 2 The fractal characteristic of inversion LAIs at different scales. 

 

3.2. The influence of the standard deviation of the image on the scaling transfer model 

 

In this study, the CCD image of size 512*512 were divided into 1024 sub-images of size 16*16, 256 

sub-images of size 32*32, 64 sub-images of 64*64, 16 sub-images of 128*128 and 4 sub-images of 256*256, 

respectively. The relationships between the standard deviation σNDVI and fractal dimension D of each sub-image 

were given in Fig. 3. Regardless of the size of the sub-image, the fractal dimension of the sub-images increased as 

the σNDVI increased. It indicated that the fractal dimension in the scaling transfer model was mainly influenced by 

σNDVI. 

   

  

   

Figure 3 The relationship between the standard deviation σNDVI and the fractal dimension D of the sub-images with 

different sizes. 



4. DISCUSSION AND CONCLUSION 

 

In this study, a LAI scaling transfer model based on fractal theory for computing LAIs at different scales was 

proposed. The results showed that the scaling transfer model performed well in estimating LAIs at different scales. 

The study found that the fractal dimension D of the image, the parameter of the scaling transfer model, increased as 

the standard deviation σNDVI increased. 

An image of size N*N was selected to perform the scaling transformation in this paper, and N is required to be 

a composite number. However, in the practical applications, the object of scaling transformation is mainly a certain 

land cover type, the shape of which is generally irregular. Therefore, further analysis and exploration are needed for 

the application of this method on the irregular objects in practice. 
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