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ABSTRACT: This study integrates Decision Tree (DT) and Particle Swarm Optimization (PSO) algorithms with 
Fuzzy Rule Induction (FRI) operator respectively (called DT-FRI and PSO-FRI) to assess landslide susceptibility 
according to existing rainfall-induced and shallow landslide events. The constructed landslide susceptibility models 
are applied to classify and verify occurrence samples. In this study, two strategies are applied for the model 
verification, i.e. space- and time-robustness. The former is to separate samples into training and check data based on 
a single event. The latter is to predict (classify) later landslide events with a landslide susceptibility model which is 
constructed from earlier events. Eleven geospatial factors are considered, including topographic, vegetative, 
environmental, geological and man-made information. The landslide inventory and factors are overlapped to obtain 
the training and check data for modeling and verification. Experimental results show that applying the conventional 
DT algorithm can reach high modeling accuracy respectively based on the space-robustness strategy but both have 
poor performance to predict (classify) consequent events (time-robustness). After integrating with FRI, the 
prediction (classification) results are significantly improved, especially using PSO-FRI models. 
 
1.  INTRODUCTION 
 
Landslide is one of the natural and geological hazards that can cause serious property losses and human casualties. 
Rainfall-induced and shallow landslides are frequently triggered by typhoons and other extreme weather events 
from June to September every year in Taiwan. Therefore, modeling and predicting landslides in order to prevent and 
mitigate disasters has become an important issue. Modeling landslide susceptibility is a fundamental and essential 
task in the landslide risk assessment and management framework (Dai et al., 2002). In this study, landslide 
susceptibility represents the likelihood of landslide occurrence in an area with given local terrain attributes (Brabb, 
1984) and the triggering factor (i.e. rainfall) is not taken into account because it may change in a short period (Dai et 
al., 2002). A number of related works for evaluating landslide susceptibility have been proposed and can be 
classified into three main categories(Clerici et al., 2006; Wan, 2009; Yilmaz, 2010), i.e. deterministic, heuristic and 
statistical approaches. On the other hand, remotely sensed images, LiDAR point clouds and GIS datasets can be 
used effectively to monitor and investigate long-term landslides in a regional scale (e.g. Peduzzi, 2010; Tsai and 
Chen, 2007). As geospatial technologies and data advance, data mining based methods have been intensively 
developed to build landslide susceptibility models, such as decision tree (e.g. Nefeslioglu et al., 2010; Tsai et al., 
2013), particle swarm optimization (e.g Lai and Tsai, 2014; Wan, 2013) and fuzzy rule induction (e.g. Muthu et al., 
2008; Gorsevski and Jankowski, 2010). 
 
Among them, Decision Tree (DT) is a non-parametric method that does not require classification assumption. 
However, it might be inadequate in dealing with complicated cases. Particle Swarm Optimization (PSO) is a novel 
concept to learn the collective behavior of biology for numerical analysis and computational optimization. It is 
primarily employed in the artificial intelligence domain. The PSO strategy is to change the velocity and position of 
particles that performs iteration process to find the global or best solution.  However, few studies have adopted the 
PSO algorithm to model landslide events. Fuzzy Rule Induction (FRI) algorithm has been proposed to solve non-
linear and uncertainty cases, but the classification rules (or expert database) are usually constructed manually. 
 
This study tries to integrate DT and PSO classifiers with FRI algorithms respectively (called DT-FRI and PSO-FRI) 
for landslide susceptibility modeling based on existing rainfall-induced and shallow landslide events. The 
constructed landslide susceptibility models are applied to classify and verify occurrence samples. In this study, two 
strategies are investigated for the model verification, i.e. space- and time-robustness. The former is to separate 
samples into training and check data based on a single event. The latter is to predict (classify) later landslide events 
with a landslide susceptibility model which is constructed from earlier events. Eleven geospatial factors are 
considered, including topographic, vegetative, environmental, geological and man-made information. Finally, the 
landslide inventory and factors are overlapped to obtain the training and check data for modeling and verification. 
 



2.  STUDY SITE AND DATA 
 
The Shimen reservoir watershed in Taiwan is selected as the study site as shown in Figure 1. It covers about 763.4 
square kilometers. The elevation in the watershed measured from DEM (Digital Elevation Model) data ranges 
between 250 to 3,500 meters above sea level. The major land-cover is forest, but there are sparse agricultural 
activities. Landslides are commonly induced by heavy rainfall in this region and the debris flows are flushed into 
the reservoir, causing various problems in water supply and resource management. 
 

 
Figure 1. Study site 

 
Eleven factors are considered in this study as listed in Table 1. The NDVI (Normalized Difference Vegetation 
Index) is the only multi-temporal factor, selected before typhoon events. In addition, this study normalized all 
NDVI images using PIFs (Pseudo Invariant Features) to reduce the different radiometric and atmospheric conditions. 
It is very convenient and suitable to analyze multi-temporal NDVIs (Du et al., 2002). For identifying landslide 
samples, the landslide extents of four typhoons were digitized based on change detection analysis results that were 
checked against auxiliary ground truth data and field investigations to generate a landslide inventory (Tsai and Chen, 
2007). Consequently, this study transformed all landslide extents, vector-based factors and DEM into the 10 m X 10 
m cell size in order to overlay with the NDVI image. However, these landslide pixels probably contain deposition 
area (non-landslide), thus may affect the fidelity of the model and cause inaccurate results. Therefore, this study 
removes landslide deposition pixels with an empirical criterion to overcome this problem. In this study, landslide 
pixels identified on satellite images but whose slope is less than 10 degrees are considered as deposition instead of 
landslides (Deng et al., 2016). Table 2 displays four typhoon events and the numbers of landslide pixels occurred 
after each typhoon. 
 

Table 1. Used landslide causative factors 

Original data Useddata 

(Raster format) 

Original 

resolution/scale 

DEM Elevation 40 x 40 m 

Slope 

Aspect 

Curvature 

SPOT Images NDVI 10 x 10 m 

River map Distance toriver 1/5,000 

Road map Distance to road 1/5,000 

Fault map Distance to fault 1/50,000 

Land-use map Landuse 1/5,000 

Soil map Soil 1/25,000 

Geology map Geology 1/50,000 
 

Table 2. Typhoon events and number of landslide 

pixels 

Typhoon event Date No. of landslide pixels  

Aere 2004/8 23,166 

Matsa 2005/8 1,480 

Sepat 2007/8 227 

Wipha 2007/9 218 
 



3.  PROCEDURE AND METHODOLOGY 
 
There are four primary steps in this study, including (1) data pre-processing and integration, (2) data arrangement, 
(3) landslide susceptibility modeling and (4) accuracy assessment. In the data pre-processing and integration step, 
because the utilized analysis algorithms are record- (grid- or cell-) based, vector data need to be rasterized. In 
addition, all data were resampled to the same cell size (10 x 10 m) and subjected to PIFs normalization for the 
NDVI images. Subsequently, some factors that can provide advanced information were derived from original data. 
Finally the pre-processed data were integrated for the subsequent analyses. 
 
For the data arrangement, for each typhoon, non-landslide (non-occurrence) samples (pixels) were randomly 
selected and the number of pixels is the same as landslide. The attributes of integrated data were extracted according 
to different spatial- and event-based landslide and non-landslide samples in order to input the classifiers for space- 
and time-robustness verifications respectively. This study selects 2/3 samples to build the model and the remainder 
are used for verification in the space-robustness tasks. For the time-robustness verification, the later events are 
predicted (classified) by the earlier event model. In our case, Typhoon Aere, that has the largest number of landslide 
samples, is treated as the training data to construct landslide susceptibility models for classifying Typhoon Matsa, 
Sepat and Wipha events, respectively. To assess the models, this study calculates Overall Accuracy (OA) and 
Kappa coefficient, and compares the landslide sample’s susceptibility for the space- and time-robustness 
verification, respectively. 
 
For constructing the DT-FRI and PSO-FRI models, landslide factors are discretized (Fayyad and Irani, 1993) firstly 
because the combination of decision tree and fuzzy rule induction is available only for discrete data. Consequently, 
the fuzzy memberships of landslide factors should be assigned. This study characterizes the fuzzy relationships as 
the triangular shape, and then the number of membership functions and discrete subsets are equal in each landslide 
factor. Figure 2 illustrates an example of fuzzy memberships. Finally, the representative rules conducted by the 
decision tree and particle swarm optimization (Holden and Freitas, 2008) algorithms under the space-robustness 
verification are selected and embedded in the fuzzy rule induction algorithm based on a simple and popular fuzzy 
inference, Mamdani’s fuzzy inference, to perform the time-robustness verification further. 
 

 
Figure 2. An example of fuzzy memberships in a specific factor (X: discrete subset, Y: fuzzy degree) 

 
4.   RESULTS 
 
A two-phase verification is employed to examine the fidelity of the constructed models. First of all, this study 
performs the conventional decision tree algorithm to classify occurrence and non-occurrence samples based on the 
space-robustness verification event by event. The classification results are shown in Table 3. It is obvious that 
decision tree can separate landslide and non-landslide samples well to obtain high overall accuracies and Kappa 
coefficients. Therefore, the effectiveness of developing a space-robustness based algorithm for further improvement 
will be limited. Instead of confining in the space-robustness, this study switches to an approach focused on time-
robustness. 
 

Table 3. Evaluations of space-robustness verification using decision tree classifier 
Typhoon Event Aere Matsa Sepat Wipha 

OA (%) 92.85 97.91 92.86 91.22 
Kappa 0.857 0.9583 0.8574 0.8241 

 
To compare DT, PSO, DT-FRI and PSO-FRI performances, overall accuracy and landslide samples’ susceptibility 
are used. Table 4 lists the overall accuracies considering different typhoon events and classifiers. Although overall 
accuracies are relatively lower than space-robustness verifications, these results show that the PSO-FRI outperforms 
others and can be further discussed in different perspectives. From a statistical point of view, a low overall accuracy 



means occurring errors in experiments. In other words, there exist significant disagreement between the training and 
check data. It can be connected to an assumption of data-driven approaches that the past landslide conditions will 
occur in the future but the collected data may be unsatisfied to predict all consequent events. Thus there are two 
scenarios that may cause classification errors. Firstly, the classified landslide samples reveal that similar conditions 
occurred in the past, but these locations in the check data are stable at present. On the contrary, the landslide areas 
are classified as a non-landslide class because the models do not have similar occurrence situations. These are 
reasons why the overall accuracies are lower than the space-robustness verification. Therefore, the crisp (hard) 
evaluators, such as overall accuracy and Kappa coefficient, may be inappropriate to reflect the advantage of 
landslide susceptibility analysis in the time-robustness verification. Instead, this study utilizes the landslide sample’s 
susceptibility to assess the results. 
 
Table 5 shows that decision tree classifies the landslide samples into the extreme susceptibility categories (i.e. [1, 
0.75] and (0.25, 0)) and the hybrid methods (i.e. DT-FRI and PSO-FRI) estimate them into the middle susceptibility, 
(0.75, 0.5] especially. It is clear that DT-FRI and PSO-FRI classifiers provide more reasonable landslide 
susceptibility results than decision tree. Furthermore, the number of conducted rules is also shown in Table 6. The 
results reveal that PSO-FRI is more effective than other algorithms. 
 

Table 4. Evaluations of time-robustness verification using DT, PSO, DT-FRI and PSO-FRI classifiers 
OA (%) Typhoon Matsa Typhoon Sepat Typhoon Wipha 

DT 69.59 52.64 72.71 
PSO 67.33 50.44 70.64 

DT-FRI 69.39 56.39 63.76 
PSO-FRI 79.29 57.71 79.82 

 
Table 5. Landslide sample’s susceptibility of time-robustness verification using DT, DT-FRI and PSO-FRI 

classifiers 
Check event Classifier Landslide susceptibility interval (%) 

[1, 0.75] (0.75, 0.5] (0.5, 0.25] (0.25, 0] 
Matsa DT 38.51 6.69 7.57 47.23 

DT-FRI 0 89.19 10.81 0 
PSO-FRI 0 90.07 9.93 0 

Sepat DT 10.57 0.88 6.17 82.38 
DT-FRI 0 65.2 34.8 0 

PSO-FRI 0 53.3 46.7 0 
Wipha DT 45.87 5.96 6.42 41.74 

DT-FRI 0 85.32 14.68 0 
PSO-FRI 0 90.37 9.63 0 

 
Table 6. Number of rules of DT, PSO, DT-FRI and PSO-FRI classifiers under the time-robustness 

DT PSO DT-FRI PSO-FRI 
2,886 432 48 45 

 
5.   CONCLUSION 
 
This paper presents a procedure to construct landslide susceptibility models based on rainfall-induced and shallow 
landslide events. Eleven geospatial factors are used, including topographic, vegetative, environmental, geological 
and man-made information. The landslide inventory and factors are overlapped to produce the training data for 
modeling and verification. There are two verifications in the study, i.e. space- and time-robustness. This study 
integrates both decision tree and PSO with fuzzy rule induction (i.e. DT-FRI and PSO-FRI) to classify samples and 
verify the prediction (classification) by the time-robustness method. The proposed model is also compared with the 
decision tree and PSO classifiers. The results indicate that the decision tree classifier can reach high classification 
accuracy under the space-robustness strategy but it and PSO have poor performance to predict (classify) subsequent 
events. Consequently, the landslide sample’s susceptibility is applied to evaluate the results of time-robustness 
verification. The results show that PSO-FRI is more reasonable and effective than other algorithms in the study 
cases. 
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