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ABSTRACT The aims of this study is to indicate the potential ability of Chinese GF-1 satellite 

imagery in grassland cover retrieval at the surface mine area of north prairie. The Chinese GF-1 and 

SPOT6 multi-spectral imagery was selected. The Dimidiate Pixel Model, Partial Least Squares 

Regression (PLSR) and Support Vector Machine (SVM) models based on the different vegetation 

indices were established to retrieval grassland cover. The field observation data from sampling plots 

was used to assess the accuracy of different models. Furthermore, Monte Carlos simulation was 

conducted to evaluate cross-scale error propagation from SPOT6 to GF-1 data. The results showed that 

enhanced vegetation index (EVI) from GF-1 can produce high accuracy  (R2=0.8149，RPD=2.336，

RMSE=8.694） based on SVM model, meanwhile, the normalized difference vegetation index (NDVI) 

from SPOT-6 data can produce high accuracy（R2=0.8755，RPD=2.870，RMSE=7.032）based on SVM 

model as well. In terms of the cross-scale error propagation from SPOT6 to GF-1 data, the SVM model 

outperformed PLS model in grassland cover retrieval. Therefore, the Chinese GF-1 data can provide 

grassland cover with high accuracy based on SVM model. 

KEYWORDS：GF-1 data；SPOT6 data；fractional vegetation coverage of grassland；Dimidiate Pixel 

Model；PLSR；SVR 

1. INTRODUCTION 

Fractional vegetation cover (FVC) refers to the percentage taken by the vertical projected area of 

vegetation (including leafs, stem and branches) in the total statistical area(Urban et al. 2010). Fractional 

vegetation cover is an important variable for describing vegetation quality and reflecting ecosystem 

changes (Laliberte et al. 2007). It is also a sensitive indicator of land degradation and desertification in 

semi-arid grasslands(Liu et al. 2012). Although the digital camera from ground survey can provide the 

FVC information in the plant quadrate with higher accuracy for a smaller range, it is unlikely to do so 

for a larger range. Remote sensing provides the possibility for large scale of the FVC (Xie et al. 2008). 

The satellite reflectance values must be transformed into plant coverage to make the plant coverage 

product suitable for estimation and monitoring purposes. Linear spectral unmixing and spectral angle 

mapper techniques have been widely used to translate reflectance values from remote sensing imagery 

into plant coverage values. More advanced multivariate methods used to retrieve plant coverage from 

satellite data encompass partial least squares regressions (PLSR) and machine-learning algorithms such 

as support vector machines (SVM), which have been evaluated as a valuable tool to cope with 

non-linear relations and highly correlated predictor variables (Lehnert et al. 2015). 

Mining actives, particularly surface coal mine at the semi-grassland has a large impact on the 

surrounding landscape ecosystem function(Demirel et al. 2011). The monitoring and estimation of 

plant coverage is essential, which would indicate the condition of grassland affected by human 

activates including mining and grazing. Fractional vegetation cover (FVC) is an important surface 



parameter for characterizing land surface vegetation cover as well as the most effective indicator for 

assessing mine affected environment(Zou et al. 2010). With the development of the remote sensing 

data with high resolution, the accuracy of estimation vegetation coverage has been improved. Wide 

field view (WFV) sensor on board the Chinese GF-1, the first satellite of the China High-resolution 

Earth Observation System, is acquiring multi-spectral data with decametric spatial resolution, high 

temporal resolution and wide coverage, which are valuable data sources for environment 

monitoring(Jia et al. 2016). The objective of this study is to develop a general and reliable fractional 

vegetation cover (FVC) estimation algorithm for GF-1 WFV data in semi-arid north prairie with land 

cover of coal mine area, degraded grassland, grazing grassland and fence grassland. The algorithms, 

including Dimidiate Pixel Model, Partial Least Squares Regression (PLSR) and Support Vector 

Machine (SVM) models based on the different vegetation indices are expected to estimate FVC from 

GF-1 WFV reflectance data with spatial resolution of 16 m and SPOT-6 multi-spectral data with spatial 

resolution 6m.   

2. STUDY AREA AND DATA 

2.1 Study area description and data collection  

 Hulunber meadow steppe is located in gentle hilly area of the greater Khingan Range, with a 

temperate semi-arid continental climate characterized with a long cold winter, short cool summer, dry 

windy spring and fall of early frost and sudden drop in temperature. Yimin opencast coal mine is in the 

central of Hulun Buir meadow steppe. The mining activates started at 1985 with progressive land 

rehabilitation. The native landscape is plain and temperate grasslands dominated by 

Leymuschinensis,lyme grass and Stipagrandis, and subject to grazing. The soil is chernozemor dark 

chestnut. This area has undergone some desertification and grassland degradation as the overgrazing, 

farming and mining. Thus, our field observation was carried out from the grazing exclusion, 

overgrazing and mine restoration area (Figure 1). The soil substrates on the restoration dump of mine is 

from the natural soil. Over 20cm of topsoil (chernozem) was used as a growth medium to cover the 

dump to support vegetation rehabilitation. The restoration dump understory is dominated by native 

grasses. There is no specified treatment on the restoration dump. 

 

 

 

 

 

 

 

 

      Figure 1 the photos of grass sampling plots under different land use  

Ground sampling and observation experiment was from August 3 to July 28, 2015. Ground 

sampling is aligned with remote sensing image. Sampling range extended 10km which take Yimin 

opencast coal mine as the center, and the sampling area is 1600 km2. Based on the characteristics of the 

vegetation in the study area, random sampling method was used. At the same time using GPS to record 

Grazing exclusion Over grazing area Restoration area 

http://dict.cnki.net/dict_result.aspx?searchword=%e6%8a%ab%e7%a2%b1%e8%8d%89&tjType=sentence&style=&t=lyme+grass


each kind of geographic coordinates, vegetation type, and geomorphic environment, a total of 64 

samples (size 1 m×1 m)(Figure 2). SONY SELP 165 digital camera was used to take photos above 

quadrat 1m. 

 

Figure.2 Distribution of the samples and GCP 

2.2  Remote sensing data preprocessing  

GF-1 and SPOT6 multispectral data covering the study area were obtained at July 5th and July 

28th 2015. The parameters of two types of imagery are as shown in table 1.  The image preprocessing 

included radiometric calibration, atmospheric correction, and geographic registration. The parameters 

and the spectral response function of GF-1 were downloaded from China Central For Resources 

Satellite Data and Application (http://www.cresda.com/CN/). First-order polynomial method was 

selected for geographic registration using the ground contrl points. The RMSE value of geographic 

registration of GF-1 and SPOT6 data are below one pixel.  

Table.1 Characteristic of for SPOT and GF-1 remote sensing data 

The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), soil 

adjusted vegetation index (SAVI) and modified soil adjusted vegetation index (MSAVI) were selected 

to estimate vegetation coverage (Perry and Lautenschlager 1984, Huete 1988). The characteristics of 

the four vegetation index are shown in table 2. NDVI has been widely used in vegetation monitoring, 

which is the highest correlated with vegetation coverage. EVI base on red band and near-infrared band 

joining blue band, can reduce the aerosol scattering and the influence of soil background. SAVI is soil 

adjusted vegetation index, can reduce the influence of soil background. MSAVI is modified soil 

adjusted vegetation index, is developed on the basis of SAVI.  

Table.2 vegetation index 

sensor band resolution/m width/km 

GF-1 
blue （ 0.45-0.52um ）、 green （ 0.52-0.59um ）、 red

（0.63-0.69um）、near-infrared（0.77-0.89um） 
16 800 

SPOT6 
blue （ 0.45-0.52um ）、 green （ 0.53-0.59um ）、 red

（0.62-0.69um）、near-infrared（0.76-0.89um） 
6 60 

Vegetation 

index 
formula advantage 



3. METHODS 

3.1 Calculation of plant coverage from digital images 

The digital images were taken from each measuring plot, which preprocessed by geometric 

correction and subset. We derived the plant coverage within the greenness value of the digital photo. 

We calculated an image from the RGB values in which green vegetation was enhanced using the 

following rules (Baxendale et al. 2016): (1) Extracting vegetation by setting up the green band is 

greater than the red and blue band; (2) removing influence by shadow with setting up the green band 

minus red band is greater than a threshold. 

3.2 Dimidiate pixel model 

The dimidiate pixel model (DPM) is a simple but practical model for remote sensing 

estimation(Sohn and Mccoy 1997). The model hypothesizes that the 1-pixel surface consists of two 

parts: the vegetation-covered and the vegetation-uncovered surfaces. According to the principle of 

dimidiate pixel model R, the information observed from the remote sensor can be expressed as the sum 

of Rv, the information contributed by the green vegetation components, and Rs, the information coming 

from the soil components. The mixed pixel model simplifies the pixel information R into Rv and Rs, 

representing the vegetation information and non-vegetation information, respectively. 

（1）
v s

R R R   

Let fc be the coverage percentage of the vegetation in one pixel, the FVC of this pixel, then the 

percent of the non-vegetation coverage is 1–fc. If let Rveg be the pixel information under all covered by 

vegetation, Rv can be expressed as the product of Rveg and fc. 

（2）
v veg
R fc R   

Similarly, if there is no vegetation coverage (pure pixel all covered by soils) and let Rsoil be the 

pixel information, then Rs is the product of Rsoil and 1–fc. 

s
(1 ) （3）

soil
R fc R    

Substituting Equations 2 and 3 into Equation 1, the following equation can be obtained: 
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Li analyzed each vegetation index and pointed out that dimidiate pixel model has the best 

correlation with NDVI. 

The formula of dimidiate pixel mode can be obtained: 

veg

（5）soil
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NDVI NDVI
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where, NDVIsoil and NDVIveg represent the NDVI values of the bare soil or non-vegetation 

coverage pixel and a pure vegetation pixel respectively. Theoretically, the Nsoil value of most bare soil 

surfaces approaches zero. However, the range of Nsoil values is between -0.1 and 0.2 due to the impact 

of many factors. According to the frequency statistics and the actual situation of vegetation coverage in 

study area, the values of NDVIsoil and NDVIveg are select 0.05 and 0.95[17]. 

3.3 PLSR and SVM 

The PLSR and SVM model were established by the vegetation index from remote sensing 

imagery and vegetation coverage observed from digital image. In order match the vegetation index and 

vegetation coverage in spatial location, the 3*3 window from remote sensing image was generated by 

selecting the field sampling plots as center. Then the average vegetation indices value from 3*3 

windows was calculated, which corresponds to the vegetation coverage from field sample plot. Finally, 

44 samples were selected to establish the model, and 20 samples were used as test data to validate the 

predictive performance of the model. The root-mean-square error (RMSE), the relative percent 

deviation (RPD) and the R2-value of the linear relationship between predicted and observed plant 

coverage values were calculated to evaluate the model. When the RPD < 1.75 that the established 

model is not available; When the RPD is in 1.75 to 1.75 that the established model is basically 

available; When the RPD is in 2.25 to 3 that the established model is generally successful; When the 

RPD > 3 that the established model is very successful(Boulet et al. 2013). 

  The PLSR is a bilinear modeling technique where information in the original x data is projected onto 

a small number of underlying (“latent”) variables called PLSR components. The y data are actively 

used in estimating the “latent” variables to ensure that the first components are those that are most 

relevant for predicting the y variables. Interpretation of the relationship between x and y data is then 

simplified as this relationship is concentrated on the smallest possible number of components. In this 

study, the x represents various vegetation indices, and y represents vegetation coverage. This 

regression model was implemented in R 3.2.1 version, using the package “pls” for the PLSR modeling. 

SVM regression was the second approach to estimate plant coverage values using the same 

feature space as for PLSR as predictors. One of the important benefits of SVM regression models is the 

very good balance between estimation accuracy and overfitting (Schwieder et al. 2014).SVM is a 

kernel-based learning method from statistical learning theory. It is possible to derive a linear 

hyperplane as a decision function for non-linear problems and then apply a back-transformation in the 

non-linear space using the kernel-based learning method. The radial basis function kernel, which is the 

typical general-purpose kernel, was used in this study. The support vector machine was performed by 

using the “e1071 package”, an R interface to library for support vector machines 



(LIBSVM).Optimization of the SVM parameters (C, e, and kernel-specific parameter) and the 

selection of the best preprocessing steps have been done by a systematic grid search of the parameters 

using leave one-out cross-validation on the training set. 

3.4 Error propagation and validation of plant coverage predictions 

The 6-m-resolution training samples used to fit the regression models at the GF-1 scale 

encompass estimation errors at the SPOT scale model output. To quantify this error, we used 

Monte-Carlo simulations as proposed by Gessner (2013) to evaluate cross-scale error propagation. 

SPOT6 data was selected to fit GF-1 in this study.  

(1) The plant coverage values derived from the in-depth analysis of digital photographs taken during 

field work are selected to establish model with vegetation index derived from SPOT6 data (as 

shown  ① in figure 3); 

(2) The plant coverage values were estimated with the model in ① by averaging vegetation index 

from the SPOT6 data belonging to each respective and co-located GF-1 pixel(as shown  ② in 

figure 3); 

(3) Vegetation index derived from GF-1 data was established model with the vegetation coverage in 

②(as shown  ③ in figure 3); 

(4) The plant coverage values were estimated with the model in③ by vegetation index from the 

GF-1 data. 

Vegetation index derive 
from GF-1 data

Model

Average of two 

vegetation indexes

Vegetation 

coverage

②

Vegetation 

coverage of GF-1

①
Vegetation coverage 

estimation by photos

Vegetation index derive 

from SPOT6 data

Model

③

 

Figure.3 the flow chart of cross-scale error propagation 

4. RESULT AND ANALYSIS 

4.1 FVC analysis from sample plots 

As shown in figure 4, the extracted greenness footprint for FVC from digital image in 1m*1m 

sample plot. The FVCs were calculated using digital images from a total of 64 samples. The maximum 

of vegetation coverage is 73.32%, the minimum is 4.39%, average is 25.37%, the standard deviation is 

20.20, and P-value is 1.833 e-07. Statistical analysis of FVC is shown in figure 6. Normal distribution 

of the QQ, scatter near roughly in a straight line, thus think sample data are approximately subordinate 

to logarithm normal distribution(Figure 5). 



 

 

 

Figure.4The result of estimating FVC by digital image taken in field sampling plot 

Table 3 the calibration and validation results of FVC using PLSR and SVM 

 

 

 

 

 

 

 

 

 

 

Figure 5 Statistical analysis of samples（Left:QQ figure Right:Normal distribution map） 

Meth

od 
Sensor 

Calibration（n=44） Validation（n=20） 

NDVI EVI SAVI MSAVI NDVI EVI SAVI 
MSAV

I 

PLS

R 

GF 

RMSE 9.967 9.604 
10.28

0 
11.039 11.544 10.905 12.316 11.657 

R2 0.748

4 

0.766

1 

0.731

9 
0.6907 0.7160 0.7644 0.6570 0.6725 

RPD 2.038 2.115 1.976 1.840 1.790 1.895 1.678 1.773 

SPOT

6 

RMSE 9.232 
10.00

7 
9.425 10.482 10.906 13.179 13.334 11.546 

R2 0.781

9 

0.742

3 

0.772

5 
0.7204 0.6945 0.6525 0.5913 0.6560 

RPD 2.186 2.016 2.141 1.925 1.895 1.568 1.550 1.789 

SVM 

GF 

RMSE 8.439 8.694 8.920 9.018 13.518 10.295 12.061 12.967 

R2 
0.823

0 

0.814

9 

0.801

6 
0.7975 0.7341 0.7757 0.7437 0.6949 

RPD 2.407 2.336 2.277 2.252 1.528 2.007 1.713 1.593 

SPOT

6 

RMSE 7.032 7.601 7.213 7.896 10.230 11.655 10.237 10.026 

R2 
0.875

5 

0.857

6 

0.869

3 
0.8431 0.7486 0.6726 0.7474 0.7572 

RPD 2.870 2.655 2.798 2.556 2.020 1.773 2.018 2.061 
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4.2 FVC Model calibration   

The results of estimating vegetation coverage with PLSR and SVR are shown in table 3. For GF-1 

data, there are better correlative correlation between NDVI and EVI and FVC. The PLS with RPD 

value around 2 produce relative lower accuracy than SVM with RPD value larger than 2.4. The 

enhanced vegetation index (EVI) from GF-1 can produce high accuracy  (R2=0.8149，RPD=2.336，

RMSE=8.694） based on SVM model, meanwhile, the normalized difference vegetation index (NDVI) 

from SPOT-6 data can produce high accuracy（R2=0.8755，RPD=2.870，RMSE=7.032）based on SVM 

model as well (Figure 6). However, DPM method produces the lower accuracy than SVM and PLSR 

model, which generate R2 of 0.62, RMSE of 13.91 for GF-1 data and R2 of 0.64, RMSE of 20.71for 

SPOT-6 data (Figure 7). 

 

Figure 6 Scatter plots of SVM model（Left:GF-1(EVI) Right:SPOT6(NDVI)） 

 

Figure 7 Scatter plots of dimidiate pixel model（Left:GF-1 Right:SPOT6） 

4.3 Error propagation model validation  

As shown in Figure 8, there is significant difference between FVC from DPM and SVM, PLSR, 

particularly at the level over 60% vegetation cover. For DPM method, all pixels were classified as 

vegetation (NDVIveg) and un-vegetation (NDVIsoil). Once one pixel contains various type of vegetation 

or land cover, it would result in the lower accuracy of estimated FVC. The estimation coverage at each 

level from SVM and PLSR method is similar for SPOT 6 data.   

  

  



   

Figure 8 Histogram of vegetation cover in different levels （Left:GF-1 Right:SPOT6） 

 

Monte Carlos simulation was conducted to evaluate the influence of spatial resolution on the precision 

of estimation vegetation coverage. In Monte-Carlo simulations, the training samples were manipulated 

using RMSE from the cross-scale error propagation. This step was performed 10,000 times. 

Cross-scale RMSE of vegetation coverage is mainly at 11-16 for PLSR method and 12-15 for SVM 

method respectively. The error accumulation would increase with cross-scale error propagation. The 

frequency value of SVM started to reduce dramatically after the RMSE of 14.Thus, given to different 

resolution (SPOT6 to GF-1) in FVC estimation, The SVM method can produce lower RMSE value 

rather than PLSR method.  

  

 

Figure 9 The result of Monte Carlo simulation  

5. CONCLUSION 

In this study, we presented the plant coverage product for the grasslands of the mine affected area in 

Hulunber meadow steppe to be fully validated against ground data sampled in field. We tested three 

different methods (DPM, PLSR and SVM regression) in a cross-scale cascade of satellite data (Chinese 

GF-1 and SPOT-6) with decreasing pixel resolution. It was found that the methods using only satellite 

reflectance values (PLSR, SVM regression) yielded better results than those based on DPM. Chinese 

GF-1 data can provide grassland cover with high accuracy based on SVM model. Because the error 

rates of the SVM regression models were low, the final product may help stakeholders at local and 

regional scales to define livestock storage capacities or evaluate the mine affected pastures. 



Furthermore, the plant coverage data may serve as data sources for future estimations of LAI, biomass 

and primary production. Such datasets are urgently required to improve the simulation of vegetation 

dynamics on the mine affected grassland in north prairie. 
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