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ABSTRACT: The development of robust and accurate filtering approach for automated extraction of digital 

terrain model from airborne LiDAR data continues to be a challenge. The problem is due to the nature of LiDAR 

point cloud, the complexity of scene components, and the intrinsic structure of terrain itself. This paper proposes a 

novel approach for filtering LiDAR data based on graphical model for energy minimization, which exploits spatial 

structure among raw point cloud for progressive segmentation. The energy model encodes both point-wise 

closeness and pair-wise smoothness as soft constraints to achieve high segmentation accuracy and help to alleviate 

the ambiguities on segment boundary. The needs for predefined hard constraints, which are not always attainable 

by users, are avoided. The formulation of point cloud filtering with energy minimization is firstly introduced, after 

which the optimization using graph cuts is presented. The definition of energy functions and the construction of 

graph model are proposed, taking into account the spatial coherence of neighboring terrain structure. The 

proposed approach has been tested in a number of datasets. The experimental results are reported and discussed. 

These results demonstrate the efficiency and the potential of the proposed approach for improved filtering of 

LiDAR point clouds. 

 

1. INTRODUCTION 

Digital Terrain Model (DTM) characterizes the geometry of the bare earth surface in terms of terrain shape and 

pattern. This digital model also provides virtual environment for a variety of applications. For instance, the DTM 

is one of the critical input data sets for predicting flooding in urban areas as it influences the flood direction, flood 

extends and flow velocity to simulate flood physics (Abdullah et al., 2009). In addition, DTM has been 

extensively utilized as contextual information for subsequent processing such as object classification (Xu et al., 

2014) and 3D urban reconstruction (Alharthy and Bethel, 2002). 

 

Airborne Light Detection and Ranging (LiDAR), also referred to as airborne laser scanning (ALS), is a widely 

used technology for the acquisition of fast and reliable elevation data. The LiDAR data directly delivers a set of 

geo-referenced point cloud over large areas with high accuracy and high resolution (Baltsavias, 1999), thus opens 

up an new geospatial applications ranging from building reconstruction (Oude Elberink and Vosselman, 2009) 

and forestry canopy mapping (Lee and Lucas, 2007) to heritage applications (Alshawabkeh, 2005). A 

comprehensive introduction of LiDAR technique and applications can be found in Vosselman and Maas (2010). 
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The raw LiDAR point cloud represents all visible landscape surfaces, also known as Digital Surface Model 

(DSM). Relevant measurements of the bare-earth surface have to be separated from the raw point cloud to obtain 

DTM. This can be time-consuming. Usually, over 60-80% of post-processing time is consumed on manual 

classification and quality control (Flood, 2001). Consequently, automated extraction of DTM from LiDAR data 

has generated much research interest over decades and intensive efforts have been conducted. The challenge of 

automated LiDAR data filtering to classify the laser returns from terrain and non-terrain surface is partially due to 

the complexity of the terrain, for instance, the co-existence of flat terrain and large size flat-topped buildings in 

urban areas (Meng et al., 2010), complex intrinsic structure of terrain with sharp discontinuity, such as dikes or 

cliffs (Sithole and Vosselman, 2003). Moreover, the unavoidable noises and irregular distribution of point cloud 

further complicates filtering. A comprehensive study and comparison can be found in Sithole and Vosselman 

(2004). Usually, methods fall into the four categories. LiDAR point cloud can be classified using the local slope 

information (Vosselman, 2000), or with region-based methods similar to those in classification of remote sensing 

imagery (Wack and Wimmer, 2002). These approaches treat each LiDAR point individually. In contrast, points 

can be grouped into segments according to some homogeneity criterion, and subsequently, the LiDAR point 

clouds can be classified with the segments (Tóvári and Pfeifer, 2005). LiDAR data can be also treated with 

surface-based filtering (Axelsson, 2000), where a set of ground points are identified to form the initial ground 

surface, and the DTM is then progressively generated by determining the rest ground points using a certain criteria. 

Recent attempts also include employment of hierarchical model to eliminate the effect of large buildings (Chen et 

al., 2013). In addition, efforts are made to determine parameters adaptively (Kim and Shan, 2011; Mongus and 

Žalik, 2012). Existing methods have their own strengths and weaknesses, and show varying degree of success on 

the test datasets with different landscape and environment types. Nevertheless, it is still a challenge for an 

approach to efficiently cope with a dataset over complex environment with mixed landscape and terrain types. 

 

In this paper, a novel approach for filtering LiDAR data is proposed through energy minimization using graphical 

model, which encodes both point-wise closeness and pair-wise smoothness as soft constraints to achieve high 

segmentation accuracy and help to alleviate the ambiguity on segment boundaries. The spatial structure is adopted 

to provide contextual information as the terrain usually exhibits strong spatial coherence and the neighboring 

points support each other to maintain terrain continuity.  The filtering works in a progressive manner to gradually 

refine ground surface, which exploits the current result for the optimization in the successive process. These are 

presented in the next Section. Afterwards, the experimental results of the proposed approach over a test site in 

Melbourne, Australia, are reported. Discussions then follow and the paper ends with a conclusion.  

 

2. METHODOLOGY 

Filtering LiDAR point cloud for the separation of terrain and non-terrain points is naturally analogue to binary 

labeling, where the data points are partitioned into two disjoint sets. Such labeling can be achieved through energy 

minimization by graph cut (Boykov and Jolly, 2001). Graph has proven to be an effective optimization tool which 

can enforce piecewise smoothness while preserving relevant sharp discontinuities. In particular, iterative graph cut 

allows automatic refinement of soft constraints with newly labeled points, resulting in more robust point cloud 



segmentation. The general scheme of the proposed iterative graph-cut based approach for segmentation of LiDAR 

point clouds is presented in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 1. General scheme of LiDAR point cloud segmentation with iterative graph cuts. 

 

The raw LiDAR point clouds undergo a process to detect the lowest point in a certain neighborhood. This will 

determine a set of sparsely distributed ground points over the scene, which produces a preliminary rough terrain 

surface. This process will also allow for detection of blunders and removal of outliers. The outliers are usually the 

occurrence of multi-path effect which generates extreme low height values (Sithole and Vosselman, 2004). In 

particular, negative outliers with extreme low height value to ground surface interfere with the assumption that 

lowest points in relative large area must belong to ground surface and should be removed. This is done with a 

method proposed in Silvan-Cardenas and Wang (2006). A graph is then constructed with the LiDAR points as 

nodes, and the links of the graph are determined by the point property in relation to the preliminary terrain surface 

and the spatial structure among points. The terrain and non-terrain points are then differentiated in an energy 

minimization procedure achieved by iterative graph cut. In each iteration, the newly identified ground points are 

added to the previous terrain surface, gradually densifying the terrain model. In turn, the improved terrain model 

enables refinement of the weights of the links in the graph, facilitating efficient identification of the rest ground 

points in the successive iteration. This process repeats until all ground points are identified and selected, therefore 

progressively completing the terrain model. In the following, the energy minimization and graph models are firstly 

presented. Afterwards, the definition of energy function and construction for LiDAR point cloud are discussed in 

detail.  
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2.1 Energy Minimization and Graph Cut 

Let 𝑃 denotes a set of LiDAR points. Each point 𝑝 ∈ 𝑃 will be assigned a unique label in the label set L {“terrain 

point”, “non-terrain point”}. The goal of segmentation is to find a labeling 𝑓 that assigns each point 𝑝 ∈ 𝑃 a label 

𝑓𝑝 ∈ 𝐿, where 𝑓 is both piecewise smooth and consistent with the observed LiDAR data. 

 

This labeling problem can be formulated in terms of energy minimization (Boykov and Jolly, 2001). The general 

form of energy function is defined as  

   𝐸(𝑓) = 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑓) + λ ⋅ 𝐸𝑑𝑎𝑡𝑎(𝑓)     (1) 
𝐸𝑠𝑚𝑜𝑜𝑡ℎ  measures the extent to which 𝑓  is not piecewise smooth, while 𝐸𝑑𝑎𝑡𝑎  measures the disagreement 

between 𝑓 and the observed data. The form of 𝐸𝑑𝑎𝑡𝑎 is typically  

𝐸𝑑𝑎𝑡𝑎(𝑓) = ∑ 𝑑(𝑓𝑝)𝑝∈𝑃       (2) 

where 𝑑(𝑓𝑝) measures how inconsistence label 𝑓𝑝 fits the point 𝑝 in the observed data. 

 

Considering the pairwise interaction of data points, the 𝐸𝑠𝑚𝑜𝑜𝑡ℎ can be defined as  

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑓) = ∑ 𝐵{𝑝,𝑞}{𝑝,𝑞}∈𝒩 ⋅ 𝛿(𝑓𝑝, 𝑓𝑞)     (3) 

where 𝐵{𝑝,𝑞} is interpreted as a pair-wise interaction function. The indicator function 𝛿(∙) is 1 if  𝑓𝑝 ≠ 𝑓𝑞 and 

0 otherwise to only measure the discontinuity along segment boundaries. 

 

Energy minimization has been used in computer vision and photogrammetry to infer information from observation 

data. For instance, Yang and Förstner (2011) formulated image interpretation as a labeling problem, where labeling 

likelihood is calculated by a randomized decision forest and piecewise smoothness is taken as a prior, which is 

encoded by spatial coherence based on conditional random fields. Shapovalov et al. (2010) and Lafarge and Mallet 

(2012) also utilized piecewise smooth priors for scene interpretation within point clouds. Kolmogorov and Zabih 

(2002) imposed spatial smoothness in a global cost function over a stereo pair of images to determine disparity. 

Instead of using a smooth prior, Zhou and Neumann (2010) combined quadratic error from boundary and surface 

terms to achieve both 2D boundary geometry and 3D surface geometry. Energy minimization is also explored to 

extract building footprints from airborne LiDAR data (He et al., 2013). 

 

The major challenge with energy minimization lies in the enormous computational costs and problem of local 

minima. Graph cuts have proven to be a useful multidimensional optimization tool which can enforce piecewise 

smoothness while preserving relevant sharp discontinuities. It has been proven to be able to locate global minima 

for a certain class of two-label energy function (Kolmogorov and Zabih, 2004). A graph cut is a set of edges such 

that the linked nodes are in disjoint sets while each node has to connect with only one terminal node which 

corresponds to its label. The minimum cut problem is to find a cut that has the minimum cost among all cuts. This 

is equivalent to identify the lowest cost for a discrete labeling 𝑓 that gives the optimum segmentation with energy 

minimization (Kolmogorov and Zabih, 2004). 

 

2.2 Definition of Energy Function and Construction of Graph 



Successful point cloud segmentation depends on both the formulated energy function and the optimization graph 

cut method. Energy function defines the required segmentation and graph should be constructed to sufficiently 

represent an unstructured point clouds. The graph cut algorithm minimizes the energy function in the weighted 

graph, resulting in an optimized segmentation of point cloud. 

 

Each point in the LiDAR point cloud is considered as a node in the graph. The graph also contains two terminal 

nodes S and T, representing labels {terrain} and {non-terrain}, respectively. The edges between the nodes are 

defined such that each node is connected to its 3-D voronoi neighbors with an edge. All points are also connected to 

the terminal nodes representing labels. When mapping 𝐸𝑑𝑎𝑡𝑎 to graphical model, an equivalent graph with the 

edge weight of {p, T} as the inconsistence with terrain labelling and similarly the edge weight of {p, S} as the 

inconsistence with non-terrain labelling is established such that any cut on the graph will result in a corresponding 

labelling (Vu, 2008). These weights correspond to the data term of the energy function and will be summed at each 

candidate labelling configuration. The weight is referred to as closeness and is evaluated in relation to the height 

residual (𝛥𝑧) between that point and terrain surface. For a ground point 𝑝, 𝛥𝑧 is close to zero, resulting in a small 

weight linking p to T while the weight edge of {p, S} is large. Such definition encourages points close to terrain 

tend to be labelled as terrain points. The closeness is defined as  

𝑑�𝑙𝑝� = �
     𝑒𝑥𝑝 �− 𝛥𝑧

𝜎1
�                      when point links with {terrain }   

       1 − 𝑒𝑥𝑝 �− 𝛥𝑧
𝜎1
�                 when point links with {nonterrain }

    (4) 

As indicated in Equation (4), the weights of a point links with S and T complement each other. A smaller value of 

𝑑�𝑙𝑝� indicates a higher consistence between the point and the terrain. Therefore, the definition of data energy 

favours terrain points in the LiDAR point cloud and penalizes the points above the ground, therefore, enforcing the 

desired solution to conform to the terrain. 

 

The edges that connect points with each other correspond to n-links in the graph. These edges are also assigned 

weights representing the smoothness term of the energy function. This weight corresponds to the 𝐸𝑠𝑚𝑜𝑜𝑡ℎ in the 

energy function. The choice of 𝐸𝑠𝑚𝑜𝑜𝑡ℎ is an also critical issue. An appropriate 𝐸𝑠𝑚𝑜𝑜𝑡ℎ will enforce spatial 

coherence and encourage LiDAR points with smooth neighbours to be assigned with the same label and preserves 

discontinuity around sharp height changes. 

 

Triangulated irregular network (TIN) neighbor system is constructed on the raw point cloud to ensure the 

connectivity. The Euclidean distance between a pair of points is adopted to measure the smoothness and the 𝐵{𝑝,𝑞} 

is determined as  

  𝐵{𝑝,𝑞} = 𝑒𝑥𝑝 (−𝐷𝑝𝑞
𝜎2

)       (5) 

where 

𝐷𝑝𝑞 = 𝑠𝑞𝑟𝑡((𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2)    (6) 

𝜎2 is selected the same as the average point spacing of the LiDAR datasetQ ∙ wi(n). As observed in Equation (5), 

closely located points generate larger smoothness value while the smoothness value is small for distant points. This 

allows for detection of abrupt changes and therefore facilitating extraction of boundaries. It can be seen the larger 



the point distance, the lower the smoothness value. The large distance usually accompanies with abrupt height 

changes, at the places between ground and tree or between ground and buildings. 

 

Combining 𝐸𝑑𝑎𝑡𝑎 and 𝐸𝑠𝑚𝑜𝑜𝑡ℎ in energy function, the differentiation of terrain and non-terrain points in LiDAR 

point clouds is achieved through energy minimization by graph cuts.  

3. EXPERIMENTAL RESULTS 

The proposed approach has been tested and evaluated in a number of datasets with varying terrain complexity and 

land covers. The performance with data collected in a typical suburban in Australia is reported in this paper. The 

test site lies in Eltham about 25 kilometres northeast of the Melbourne CBD. The site of Eltham is hilly with rolling 

terrain and steep slopes. The site covers diverse objects including a big shopping mall, residential houses, rivers, 

bridges and vegetation. The LiDAR data was acquired by an Optech Gemini scanner in October, 2008, which is 

early spring with leafs on the trees. The average point spacing is 0.75. The aerial imagery and hillshaded TINs of 

the DSM are shown in Figures 2(a) and (b).  

 

The raw data contains 2,577,387 points, of which 1,375 are detected as outliers. Figure 2(c) shows the distribution 

of the 420 initially detected terrain points. A visual inspection is carried on the detected points to ensure their 

validity. The filtering process runs in four iterations. In the first iteration, 1,059,346 terrain points are detected as 

shown in red in Figure 2(d). These represent the majority of the ground returns in the LiDAR point cloud. 

Nevertheless, an additional 342,455 terrain points are detected in the successive refinement process, as shown in 

blue in Figure 2(d).  This constitutes around 25% of terrain points, highlighting the necessity of the iterative 

filtering. The final result is presented in Figure 2(e). Obviously, the iterative graph cut process results in more 

terrain points, particularly in steep areas, providing detailed DTM shown in Figure 2(f). 



 
Figure 2. Filtering result. (a) aerial image, (b) shade TIN of DSM, (c) initial ground points, (d) iterative 

segmentation (red: ground points. blue: non-ground points), (e) classification result (green: ground points. red: 

non-ground points), (f) shade TIN of DTM. 

 

The advantage of the iterative process is also illustrated in Figure 3. The initial terrain points from local minima 

estimation, shown in red in the left figure, are sparse in order to avoid the inclusion of large buildings. In the first 

iteration, most of terrain points received closeness penalty from the initial DTM. As a result, these points are 

classified as non-terrain, as shown in the profile on the right side. With the iterative refinement, points on slopes are 

progressively classified as terrain points due to the refinement of the closeness penalty from the more detailed 

DTM. 



 
Figure 3. Illustration of the advantage of iterative filtering . 

4. CONCLUSIONS 

This paper has presented a new approach to filtering of airborne LiDAR point cloud for DTM generation. The new 

approach formulates the filtering process in energy minimization, which is optimized via graph cut. The definition 

of the energy functions takes into account the spatial coherence of terrain structure which allows for modeling the 

continuity of the terrain as well as the discontinuity with abrupt height change. The graph cut for optimization is 

performed iteratively. This allows for gradually refinement of the graph and dynamically updates of the energy 

models, thus progressively refining the terrain surface model and facilitating the separation of terrain and 

non-terrain points. 

 

The experiment results demonstrate the efficiency of the proposed approach. Even in the complex landscape, the 

terrain points are picked with the terrain break lines preserved well in visual inspection. The experiment also 

indicates the importance of the iterative approach. The dynamic adjustment of models and parameters avoid errors 

when hard thresholds are applied, thus improving the robustness of the process and the quality of the results.  

 

The results are inspected visually. An assessment with precise reference data will be implemented. Current efforts 

are also made to adapt and improve the developed approach to further differentiate points of various objects. This 

will allows for object classification from LiDAR point cloud for a wide range of applications.  
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