
A VARIATIONAL MODEL WITH ADAPTIVE REGULARIZATION BASED DENSE 

STEREO MATCHING  

 
Manimala Mahato

1
, Shirish S. Gedam

2 
and Jyoti Joglekar

3
 

1,2
C.S.R.E., Indian Institute of Technology Bombay, Powai, Mumbai, India-400076 

1
Email: manimala.mahato@iitb.ac.in 

2
Email: shirish@iitb.ac.in 

3
DJSCOE, Vile Parle West, Mumbai, India-400056 

3
Email: jyotij1968@gmail.com 

 

 

KEY WORDS: Dense disparity map, Stereo correspondence, Variational method, Adaptive regularization. 

 

ABSTRACT:  

An adaptive regularization based variational model is presented in this work, for obtaining dense disparity map of 

non-rectified stereo images. To overcome the problems such as to estimate accurate disparities near object 

boundaries, in repetitive texture regions or textureless regions and in occluded areas, we estimate disparity map by 

minimizing the global energy functional consists of data and regularizer terms, using variational model with coarse-

to-fine pyramidal approach.The pyramidal approach is used to handle large disparities. To optimize the regularizer 

in the energy fuctional, we use spatially varying regularization parameter instead of a fixed value for the entire 

image which is common to any variational framework but unsuitable for remotely sensed stereo images because of 

various image characteristices such as texture. In this approach, we use the pixel wise image gradient and the 

estimated intermediate disparity gradient to initialize and update the regularization parameter at each pixel location. 

The initialization consists of K-means clustering in the image gradient space and assignment of a per-class value of 

regularization. This has impact on the required regularization factor for a group of pixels. Step wise updation is 

involved at all levels in the pyramid by calculating the disparity in scale space followed by computing the 

derivative of the disparity map.The proposed method is found to be effective in dealing with the limitation of fixed 

regularization of the core variational method for increasing the accuracy while estimating the dense disparity map. 

We evaluate the estimated disparity map quantitatively using bad pixel error with various threshold values 

comparing with the ground truth. Bad pixel error is calculated considering all the pixels of the input image as well 

as only nonoccluded pixels.  

 

1. INTRODUCTION 

 

In the field of computer vision and digital photogrammetry, the reconstruction of three-dimensional information is 

one of the key problems. One motivation that drives many researchers in this field is the goal to imitate the 

performance of the human visual system to understand the depth of the scene by a machine. Very large parts of the 

human brain are reserved only for the processing of the information provided by our eyes. The imitation of these 

processing capabilities by a machine is a challenging task. 

 

Classical approaches for 3D reconstruction focus on image-based reconstruction i.e. estimating structure from 

stereo image pairs or from image sequences. Stereo image is the images of the same scene, captured from different 

viewpoints. Image of a scene is the projection of 3D scene onto a 2D plane. During this process, third dimension of 

an object i.e. depth is lost. To construct 3D from sequence of two-dimensional images, it is necessary to obtain the 

depth information. Depth map is computed using the disparity map obtained from the stereo matching process. 

Disparity is the difference in the projected positions of a point on the left and right images. Correspondence 

problem is to find these two projected positions in the stereo image pair. Since Marr and Poggio (Marr,1976), a 

variety of algorithms have been developed to solve correspondence problem for three decades starting from 

primitive area based technique and feature based technique to energy based technique. Accurate dense disparity 

map is the basic requirement for 3D reconstruction. Area based technique (Scharstein, 2002) generates dense 

disparity map but less accurate. Feature based technique (Faugeras,1993, Joglekar, 2014), gives more accurate but 

sparse disparity map. In energy based technique (Slesareva, 2005, Alvarez, 2002, Scharstein, 2002), deviation from 

data and regularization constraints are penalized by minimizing variational formulations. Variational method 

outperforms the other two techniques because they estimate disparities even at non-textured regions. As a result, 

always 100% dense disparity map is obtained.  

 



Various attempts have been made to solve dense correspondence computation problem using variational method. It 

is a very well-known method used for detecting motion of feature points i.e. optical flow in computer vision. 

Optical flow is the displacement field that describes the pixel shift of same feature points between two frames.

  

In variational framework, data term minimizes the difference between the feature descriptors along the 

displacement. Regularization term guaranties that the displacement for neighbor pixels are similar. Tradeoff 

between the data term and the regularization term is decided by a parameter known as regularization parameter λ. 

Value of this λ plays very important role at object boundaries. To preserve object boundaries by respecting 

discontinuities in the image, regularizer constraint can be modeled image-driven (Alvarez 2002, Mansouri 1998) or 

solution-driven (Robert, 1996) or by selecting the value of λ appropriately.  

 

Different types of images might have different features or single image consists of different features at different 

area.  A fixed regularization parameter for all the images or all pixels of the entire image is therefore an unsuitable 

factor to balance the data term and regularization term. The selection of an appropriate λ for each pixel rather than 

for each image is very much required. In this paper, we address this issue and present a variational method with 

adaptive regularization parameter (VMARP) approach to estimate the value of spatially varying λ depending upon 

the discontinuity in image features. Discontinuity in the image feature such as intensity, texture, color, and surface 

is marked by edges. Here we have marked edges based on intensity of pixels. To detect edges in any direction, two 

mutually perpendicular Sobel gradient detectors are used.    

 

In this paper, we have focused on two objectives. First one is to estimate dense disparity map from stereo image 

pair using variational method with fixed λ based on (Sun, 2014).  The second objective is to use adaptively 

changing λ in variational framework for each pixel based on image feature during the computation of dense 

disparity map. Our approach combines image-driven approach by respecting discontinuity in the image and 

solution-driven approach by respecting discontinuity in the gradually updated disparity.  

 

Our paper is organized as follows: In Section 2, first we have discussed variational model with fixed λ. The quality 

of dense disparity map is affected by regularization parameter. This motivates us to propose a novel variational 

method with different regularization parameter estimated for each pixel. Quality measure used for the evaluation is 

defined in Section 3. In Section 4, the performance of our approach is evaluated on Middlebury stereo training 

datasets. Summary in Section 5 concludes this paper. 

 

2. VARIATIONAL METHOD 

 

Let us consider a rectified stereo image pair where ��(�) and ��(�) are the left image and right image 

respectively and X= (x, y) denotes the pixel location within the rectangular image domain Ω. The rectified stereo 

image pair has only horizontal disparity. The goal of this paper is to estimate the horizontal disparity �
 at each 

pixel � of ��(�) using proposed variational method with adaptive regularization parameter approach. The disparity 

�
 of a point � in the left image is the displacement field between � and its corresponding point ��in the right 

image i.e. �
 = � − ��. In the following, we present the variational model with adaptive regularization parameter 

approach. 

 

A. The Variational Model 

 

We compute �
 as minimizer of the energy functional in its spatially discrete form as 

 

�(�) = ����� +  � ���� 

 

where the data term �����  is given by  

 

(1) 



����� = � ���(�, �) −   ���� + ��,� , �� !

(�,�)
 

 

Regularization term ���� is given by 

 

���� = � ���,� − ��"#,��! + ���,� − ��,�"#�!
(�,�)

 

 

And λ is the regularization parameter. A standard incremental multi-resolution technique is used for optimization of 

the energy functional (Sun et al., 2014) based on coarse-to-fine pyramidal framework.  

 

B. Adaptive Regularization Parameter  

 

In our approach, spatially variant regularization parameter λ is estimated adaptively. It is done in two stages: 

Initialization stage and Updation stage. 

1) Initialization Stage: In this stage, for every pixel � = (�, �) of left image �� ,  �
 is initialized based on the 

magnitude of the gradient of that pixel. Gradient magnitude denotes the strength of the edges at discontinuity. It 

will be maximum at the edges and minimum in smooth textureless area. Steps for initialization of λX are given 

below:   

a) Calculating the gradient magnitude: Left image ��  of the stereo image pair is convolved with two 3 X 3 

mutually perpendicular Sobel gradient operator S1 and S2 as in (4). This computes $�(�, �) as x-directional gradient 

and $�(�, �) as y-directional gradient at each pixel (�, �). 

 

1    2    1                 -1   0   1 

0    0    0                 -2   0   2 

                 -1  -2  -1                  -1   0   1 

S1                                           S2 

 

Gradient magnitude of each pixel is calculated using (5)  

 

∇��(x, y) =  &$�!(x, y) + $�!(x, y) 

 

b) Classification of each pixel: Each pixel X of IL is classified into K clusters using iterative k-means 

classification algorithm based on its gradient magnitude. The steps are as follows:  

i) The total number of clusters K, required to classify the given image, is determined based on the range of 

the gradient magnitude using (6).  

 

' = ( ∗ ln (∇��,�� − ∇��,-.) 

 

Where ∇��,��  and ∇��,-.  are the computed maximum and minimum value of the gradient magnitude of the left 

image ��  respectively and ( is a empirically selected multiplicative factor. Each cluster is numbered c1, c2, c3, …, 

ck. 

ii) Mean of each cluster μ01 , k= 1, …, K is computed from the range of gradient magnitude of �� which is 

∇��,-.  to ∇��,��  where superscript 0 represent the zeroth iteration for finding mean. 

iii) Each pixel X is assigned to cluster k based on the minimum absolute difference of ∇��(x, y) with  μ01 . 

(2) 

(4) 

(5) 

(6) 

(3) 



iv) The mean of each cluster is recomputed. Existing cluster mean μ01  is replaced by the updated cluster mean 

μ0.�2 .  

v) Step (iii) to (iv) is iterated till the following converging condition is satisfied. 

 

34�(|μ0.�2 − μ01|) > 7ℎ 

 

Where th is user-specified threshold and k = 1, …, K. 

 

c) Initialization of regularization parameter 

 

i) Range of λ is decided empirically and it is constant for the entire image. Minimum value of λ is λmin 

and the maximum value of λ is λmax. 

ii) λ of cluster ck is calculated using (9) 

 

�9:
1 = �,-. + (' − ;0) ∗ (�,�� − �,-.)

'     < = 1,2, … , ' 

 

All pixels belong to cluster ck will have initial regularization parameter value  �9:
1

. 

iii) @A1  is obtained where for each pixel (x,y), @A1 (�, �) = λ901  if (X=(x,y)
T
∈ ck). Size of @A1  is same as IL. 

Disparity of each pixel of IL(x,y) is calculated using (1), (2) and (3) where  � = @A1 (�, �). 

d) Pyramid construction:  The disparity for each pixel is estimated using the coarse-to-fine pyramidal 

framework where at fine pyramid level disparity is determined with the initialization from the coarse pyramid level. 

Hence, there is a requirement of λ value for each pixel at every pyramid level. A λ-pyramid is constructed from @C1 , 

named DC1. DC1 is used for the computation of disparity map at every pyramid level. The size of DC1  is same with the 

size of the image-pyramid. Consider the total number of levels in DC1is PL. The regularization parameter at each 

pixel X = (x, y)
T
 at every pyramid level pl of DC1will be denoted by @ CEF(�, �) where pl= PL, … ,1 from coarser level 

to finer level. 

 

2) Updation Stage: During the updation of disparity at every pyramid level pl for every pixel (x, y), @ CEF(�, �) 

is also updated. We consider pixels of two categories: pixels on the surface of any object where neighborhood 

pixels have similar disparity and pixels at the edge of the object where neighborhood pixels have dissimilar 

disparity. Regularization parameters for these two categories are taken care separately. Steps for updation stage are 

as follows: 

a) The pixels on the surface of any object have similar rate of change disparity. Rate of change of disparity is 

computed for every pixel (x,y) at every pyramid level pl using following equation: 

 

GEF(�, �) = (�EF(�, �) − �EF"#(�, �))
�EF"#(�, �)  

 

Where dpl+1 is disparity map calculated at coarser pyramid level and dpl+1 is disparity map calculated at finer 

pyramid level.  

b) Weight JEF#  is calculated at every pixel of pyramid level pl as follows: 

 

wpl1 = GEF(�, �)
GEF,��  

 

Where GEF,��  denotes the maximum rate of change of disparity from coarser level pl+1 to finer level pl. 

(7) 

(9) 

(10) 

(8) 



c) Pixels at the edge of the object is identified by large disparity variation as compared to disparity of the 

pixels on same surface. Disparity variation at pyramid level pl is captured by gradient magnitude of rate of change 

of disparity at pl i.e. LGEF .LGEFis obtained by taking the derivative on GEF . 
d) Another weight JEF!  is calculated for every pixel (x,y) at every pyramid level pl using the following 

equation: 

JEF! (�, �) = LGEF(�, �)
LGEF,��  

 

Where LGEF,�� is the maximum value of  LGMNwhich denotes maximum discontinuity point at pyramid level pl.   

e) The disparity of the pixels within the object is found to be similar, and at the object boundary, it is 

substantially different. Hence, regularization parameter λ is required to be increased proportional to JEF#  and 

inversely proportional to JEF!  . A combined weight JEF9  is calculated at every pyramid level pl for every pixel (x, y). 

It combines JEF#  and JEF!  using the following equation: 

 

wplc (�, �) = <#wpl1 (�, �) + 1
<!wpl2 (�, �) + 1 

 

where k1and k2 is non-negative number. By selecting the suitable positive values of k1 and k2, the combined weight 

can be adjusted in (13). In our experiment, we have taken k1=k2=1. 

f) Finally, @C
EF(�, �) is updated using weight JEF9  . The updated value will be: 

 

Lλpl(�, �) = Lλ
pl(�, �) + wpl9 (�, �) ∗ Lλpl(�, �) 

 

Where pl= PL, …, 1 from coarser level to finer level. 

 

3. QUALITY MEASURES 

 

We compute Bad Pixel Error (BPE) as the quality measure for the computed disparity map d(x,y) based on the 

ground truth map gt(x,y). BPE [2] defines percentage of bad matching pixels having disparity error more than the 

acceptable tolerance threshold. 

 

RST = 1
U � (|d(x, y) − gt(x, y)|)

(�,�)
> XY 

 

Where  δd  is the tolerance threshold value, and N is the total number of pixels. For the experiments in this paper we 

use δd = 0.5 and 1.0. 

 

4. RESULTS AND DISCUSSION 

 

The proposed algorithm has been evaluated on Teddy and Piano stereo image pair from Middlebury training 

datasets (Scharstein, 2014). Figure (1a) and (1c) shows the left image and right image of Teddy dataset and Figure 

(1b) and (1d) shows the same of Piano dataset. Ground truth of the input stereo pair is shown in Figure (1e) and 

(1f). Disparity maps estimated by the proposed method are shown in Figure (1g) and (1h). It is clearly shown from 

the disparity maps that proposed method is giving relatively sharp object boundaries. Disparities in connected areas 

such as walls and objects are estimated homogeneously. 

 

We have tested the impact of adaptive regularization by comparing our proposed method with variational method 

with fixed regularization parameter (VMFRP) approach. For assessment of the performance of our approach, two 

different experiments are designed. In our first experiment, to evaluate the effectiveness of variational method on 

stereo matching, we have tested the performance of variational method using fixed regularization parameter 

(11) 

(12) 

(13) 

(14) 



(VMFRP). In the second experiment, to evaluate the effectiveness of adaptive regularization in variational method, 

we have compared the performance of our VMARP (adaptive λ) approach with VMFRP (fixed λ) approach on the 

input datasets. Table I shows the comparison of VMFRP (fixed λ) and VMARP (adaptive λ) approach using Bad 

Pixel error (BPE) calculated using equation (14) with tolerance threshold 0.5 and 1.0 considering all pixels as well 

as only non-occluded pixels. The effect of adaptively adjusting the regularization in variational method on different 

image regions increases the BPE accuracy than using the best smoothness parameter for the entire image. The time 

complexity of our approach can be reduced by using parallel computing. This adaptive smoothness parameter 

approach in the variational framework can also be used for motion detection from video frames in computer vision. 

 

  

TABLE I.  COMPARISON OF BAD PIXEL ERROR (BPE) ERROR ESTIMATED BY VARIATIONAL METHOD WITH FIXED REGULARIZATION   

PARAMETER (VMFRP) AND VARIATIONAL METHOD WITH ADAPTIVE REGULARIZATION PARAMETER (VMARP) APPROACH ON 

TEDDY AND PIANO STEREO IMAGE PAIR 

 

 

5. CONCLUSION 

 

The most important input for 3D reconstruction is accurate dense disparity map. Conventionally, area based and 

feature based approach is used for stereo matching. But it is prone to errors caused by distortion in the imaging 

process. We have proposed a method to estimate dense disparity map using variational framework in which 

adaptive regularization parameter balances the two main constituents: data term and regularization term in an 

excellent manner at object boundaries leading to sharper boundaries in disparity map, and at textureless smooth 

region. As a result, more accurate and 100% dense disparity map is estimated. The methodology is proposed by 

analyzing the characteristics of remotely sensed stereo images with minimal input from the user where ground truth 

is not available. The ultimate objective of our present study is to estimate dense disparity map for remotely sensed 

images. 

 

Image name 
Considered 

pixels 
Technique BPE 0.5 

% 

Improvement 
BPE 1.0 

% 

Improvement 

Teddy 

 

All pixels 

VMFRP 17.14 -- 13.22 -- 

VMARP 16.02 6.5% 11.5 13% 

Non-

Occluded 

pixels 

VMFRP 16.67 -- 12.99 -- 

VMARP 15.05 9.72% 11.04 15.01% 

 

Piano 

All pixels 

VMFRP 39.26 -- 31.9 -- 

VMARP 36.01 8.27% 28.06 12.04% 

Non-

Occluded 

pixels 

VMFRP 36.03 -- 28.91 -- 

VMARP 33.06 8.24% 25.52 11.73% 



                    
(a)          (b) 

                        

    (c)                                                                   (d) 

                        

     (e)                                                                     (f) 

                         

(g)                                                                                 (h) 

Figure 1. Stereo dataset: (Column 1): Teddy dataset, (Column 2): Piano dataset, (Row 1) : Left Image, (Row 2): Right Image, (Row 3): 

Ground Truth, (Row 4): Disparity map estimated by proposed method. 
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