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ABSTRACT: The iteratively reweighted multivariate alteration detection (IRMAD) based on canonical correlation 
is a popular technique for bi-temporal analysis. We demonstrate its potential to assist in the investigation of historical 
change of land surfaces in this research. Our particular interest was in how IRMAD performed using different data 
inputs to detect simultaneous historical change in a heterogeneous topographical region of West Java. This article 
investigates IRMAD’s performance with untransformed and transformed surface reflectance from LANDSAT 5 TM 
and LANDSAT 8 OLI. Two forms of transformation were studied: tasseled cap transformation, and a set of indices 
consisting of the Normalised Difference Vegetation Index (NDVI), the Normalised Difference Water Index (NDWI) 
and the brilliance index (BI), which together contain comparable information to the tasseled cap transformation. We 
found that canonical correlation stability seems to be reached quickly on transformed data, and consistently on both 
the tasseled cap transformation and the set of indices. The tasseled cap transformation appears to increase the 
proportion of variance at the first variate, and results in more accurate change detection compared to the original 
surface reflectance and the set of indices. We found that the generation of the MAD variates was influenced by the 
type of sensor and transformations. Landsat TM5 appears to result in a smaller mean and variance of the variates than 
Landsat OLI. Meanwhile, transformation, i.e. tasselled cap and the set of indices, seems to produce a smaller mean 
and variance of MAD variates compared to what was generated by original surface reflectance. 

KEYWORDS: Change detection, multivariate alteration detection, Landsat, surface reflectance, transformation, 
tasselled cap, vegetation indices 

1. Introduction 

A robust technique to identify change is essential for accurate change detection. Either original or transformed surface 
reflectance can be used for change detection, however limited experiments have been attempted to compare the 
robustness of these options. Bi-temporal change detection techniques have been developed to assist in monitoring the 
alteration of the global land surface. Bi-temporal change detection is different from temporal trajectory analysis 
(Gong et al., 2008) with regard to the frequency of observations and evaluation of the process of change.  
 
The performance of bi-temporal change detection techniques is dictated by several factors, i.e. data selection 
including the temporal, spatial, spectral and radiometric resolutions of satellite images; environmental conditions, for 
instance atmospheric, soil and phenological properties; pre-processing; as well as sensitivity of algorithm for the 
detection (Coppin, 2004).  Several strategies have been applied to deal with these obstacles. Selecting anniversary 
dates of image acquisition is a common strategy (Lunetta et al., 2004) to reduce the effect of seasonal dynamics and 
sun angle differences for comparison of data pairs (Alaibakhsh et al., 2015). However, this strategy may not be as 
useful in tropical areas where persistent cloud cover (more than 80%) is common. Utilising the same sensor for paired 
images for change detection is a common approach to lessen noise that may be imposed when different spectral 
images are employed. Nonetheless, a long-term study likely requires diverse sensors to allow continuous monitoring 
due to limited lifetimes of particular sensors. Most authors suggest that pre-processing plays an important role in bi-
temporal change detection (Coppin and Bauer, 1996; Son et al., 2016). However, many researchers have concluded 
that no change detection method provided superior performance across all criteria such as accuracy, or capacity to 
deal with errors sourced from misregistration or seasonal circumstances (Coppin and Bauer, 1996).  
 
A literature survey shows that methods for bi-temporal change detection can be classified into two groups: post-
classification or direct change detection (Singh, 1989). The two groups are also sometimes named classification-
based or direct spectral comparison, respectively. Gong et al. (2016) proposed a division of the direct spectral 
comparison techniques into joint classification detection or simple detection. The identification of change in joint 
classification is performed by stacking images taken at two or more points in time prior to selecting training samples 
for the sequence of changes. Simple detection compares spectral values of a pair of images.  
 
The latest technique for bi-temporal change detection, multivariate alteration detection (MAD) and its modification, 
iteratively reweighted MAD (IRMAD), is based on canonical correlation, which has been shown to be robust for 
change detection (Nielsen, 2007). MAD has been described as a well-established method for bi-temporal change 
detection (Marpu et al., 2011) that shows improvements in handling problems such as image registration, spectral 



 
 

 
 

normalization and spatial autocorrelation combined in one technique (Nielsen et al., 1998).  MAD has been applied 
to images from various sensors such as Landsat (Canty and Nielsen, 2008), AVHRR (Schmidt et al., 2008), ASTER  
(Canty and Nielsen, 2008), and synthetically derived images (Wang et al., 2015). It has also been applied to various 
ecological conditions, for instance in a coastal ecosystem (Bernardo et al., 2016), forested area (Schroeder et al., 
2006), and urban region (Doxani et al., 2012).  However, very few, if any reports specifically focus on comparing the 
technique’s performance with transformed and untransformed data or across different sensors to reveal dynamic 
processes.  
 
This article discusses the application of IRMAD in a heterogeneous topographical region of West Java using the most 
ingested data, surface reflectance (SR), and transformed SR, i.e. tasselled cap and a set of indices, to enrich our 
understanding of the advantages and disadvantages of using IRMAD for bi-temporal change detection. It also 
examines the performance of IRMAD using different Landsat sensors to study historical change.  
 
2. Pre-processing in bi-temporal analysis  

Pre-processing is a necessity in bi-temporal analysis to minimise error in detecting changes.  Error in change detection 
may be due to radiometric, geometric and atmospheric differences between two images (Milne, 1988). Geometric 
correction is carried out to co-register a pair of images and minimise misregistration in order to reduce the detection 
of spurious changes due to misaligned data pairs. Misregistration has been identified as the biggest source of bias in 
change detection, contributing more than 50% of errors (Townshend et al., 1992). Several algorithms to co-register 
data are available and correlation-based techniques have been widely applied for this task (Ayoub et al., 2009; 
Leprince et al., 2007). The cross-correlation method for co-registration has been criticised as computationally 
inefficient, but has become popular with advances in computer technology.  
 
Another essential pre-processing step for bi-temporal analysis is image transformation, which allows characterisation 
of physical properties using fewer spectral images. The transformation converts multispectral images into a smaller 
number of components with minimum information loss. One spectral volume reduction method is principal 
component analysis (PCA), which transforms the original data into linear combinations of uncorrelated spectral 
information (Deng et al., 2008). The technique has been applied to identify change by integrating observations at two 
time points as a bundle of datasets. The identification of change in PCA is from the generated components having 
smaller variances. PCA can be efficiently computed, however the derived components present considerable problems 
with regard to the interpretation of physical features (Crist, 1985).  
 
Tasselled cap (TC) is another type of spectral transformation that also describes the relationships among bands and 
extracts biophysical characteristics of the channels (Crist and Cicone, 1984; Kauth and Thomas, 1976). TC generates 
three features that represent brightness, greenness and wetness (Kauth and Thomas, 1976).  TC coefficients have been 
calculated using various sensors, including Landsat TM (Crist and Cicone, 1984), Landsat 7 ETM+ (Huang et al., 
2002), Landsat 8 OLI (Baig et al., 2014), and MODIS (Lobser and Cohen, 2007).  The applications of TC include the 
study of plant succession (Fiorella and Ripple, 1993), the development of annual land cover maps (Homer et al., 
2004), and the spatio-temporal quantification of urban environments (Seto and Fragkias, 2005).  While having the 
advantages of reducing the number of spectral bands and being easy to relate to biophysical features, TC is reported 
to be dependent on sensor properties (Crist, 1985).  
 
The most popular transformation technique is forming indices that allow some spectral bands to represent targeted 
biophysical properties.  Vegetation indices, particularly the Normalised Difference Vegetation Index (NDVI), have 
been the most popular for various applications.  The applications include identification of the expansion or shrinkage 
of vegetated areas such as agriculture (Van Niel and McVicar, 2004), forest (Huete, 2012), and the built-up 
environment (Gallo and Tarpley, 1996).  Other indices include the Normalised Difference Built-up Index (NDBI) 
which specifically represents impervious surface (Zha et al., 2003); Normalised Difference Water Index (NDWI), 
used to characterise water areas (McFeeters, 1996); or Land Surface Temperature (LST) to study heat islands (Lambin 
and Ehrlich, 1997). Comparing a set of indices that are comparable with the TC transformation can demonstrate the 
potential use of these transformations for change detection. 
 
The normalisation or calibration of multi-temporal images may be another important pre-processing step that is 
required to reduce the effect of radiometric as well as atmospheric differences on the detection of changes. This pre-
processing is argued to be a necessity in bi-temporal change detection, particularly to compensate for differences in 
sensor gain, between data pairs (Du et al., 2002). Absolute and relative normalisation methods have been developed, 
and it appears that multivariate alteration detection is the newest technique that has been widely used to perform 
relative normalisation (Canty and Nielsen, 2008; Schroeder et al., 2006). This technique incorporates the ability to 
minimise misregistration and to normalise a pair of images to allow continuous comparison within multi- or hyper-



 
 

 
 

temporal change detection studies. Most applications of the technique have shown that the modified MAD, IRMAD, 
was robust for relative normalisation (Nielsen, 2007) and generating a map of changes.  
 
3. Multivariate Alteration Detection (MAD) and Iteratively Reweighted MAD (IRMAD) 

MAD is frequently used for change detection. The motivation for choosing this technique varied among users, for 
instance to calibrate two acquisition time points or to analyse and map changes. The method is based on Hotteling’s 
(1936) canonical correlation in which two sets of vector images taken at the same place, acquired at two time points, 
M=(M1, …, Mk) and N=(N1, …, Nk), are transformed into new images Q= aT M and R= bT N.  As suggested by 
Nielsen et al. (1998), vectors aT and bT are selected simultaneously by maximising variance of the difference between 
Q and R subject to the constraint that the variance of Q and R are both equal to 1,  
 
ሺܳݎሾܸܽݔܽܯ െ ܴሻሿ, ሺܳሻݎܸܽ	ݐ	ݐ݆ܾܿ݁ݑݏ ൌ ሺܴሻݎܸܽ ൌ 1 ,  
ሺܳݎܸܽ െ ܴሻ ൌ ሺܳሻݎܸܽ  ሺܴሻݎܸܽ െ ,ሺܳݒܥ2 ܴሻ  (1) 
 
By maximising the covariance of Q and R, MAD generates variance of [Q-R] to comply canonical correlation 
analysis.  Hence, maximising the difference between Q and R can be achieved by minimising non-negative correlation 
(ρ): 
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The variance of the difference then can be written as Var(Q-R) = 2(1-ρ), where ρ is the correlation between Q and R.  
The MAD transformation as the change result was defined by Nielsen et al. (1998) as: 
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From p spectral bands in the original images, two images can be generated where each new image is composed of p 
MAD-variates. The MAD-variates are orthogonal to each other and are ordered by descending variance. To deal with 
different scales due to different gain factors and atmospheric conditions, standardising values by computing their 
correlation instead of their covariance, was suggested. IRMAD’s iterative processing is performed to improve 
separation among classes by adding more weight to no-change probabilities during the process (Nielsen, 2007).   
 
Land surface dynamics in tropical regions have been studied by applying IRMAD to images from various Landsat 
sensors in order to explore the historical change processes in the area.  As the longest time series of regional scale 
data available for change analysis, several Landsat sensors have been operable, providing continuous monitoring of 
the land surface beginning with MSS, then TM and OLI.  These sensors are indispensable to supporting long-term 
monitoring at medium spatial resolution, which allows characterisation of causes of change. Alaibakhsh et al. (2015) 
applied IRMAD to characterise change processes using a series of Landsat images spanning more than a decade, 
validated by time series of multi-temporal indices derived from the same sensor. 
 
 
4. Materials and Methods 
4.1. Images and Ancillary Data 

Landsat TM5 path 122, row 65 from five time points Julian dated 273, 273, 210, 210, and 173 for the respective years 
1991, 1997, 2000, 2006, 2007 were employed (see Figure 1). Additionally, Landsat 8 OLI of the same path/rows on 
the Julian dates 173 and 221 in 2013 and 2016, respectively, were used to allow the comparison of bi-temporal change 
detection using different Landsat sensors and different transformation approaches. Landsat surface reflectance at 
those time points was employed to analyse change. The surface reflectance data were atmospherically and 
geometrically corrected images generated by using the United States Geological Survey’s (USGS) Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS). This product is considered provisional and is 
specifically designed to support land change studies. Interested readers should refer to Liang et al. (2001) for a full 
description of the concept behind the program and the pre-processing algorithm. 
 
 



 
 

 
 

 
Figure 1. Example of Landsat images used in the experiment.  The image is an RGB 1-2-3 of Landsat Path 122 

Row 65 acquired at Julian date 1997257 (14 September 1997). 
 
 
4.2. Methods  

In general, the experiment was initially performed by reprojecting, sub-setting, and concatenating multispectral 
images of surface reflectance provided by the USGS.  The transformation of surface reflectance was followed by 
IRMAD analyses of the transformation products and the original surface reflectance.  The process produced MAD 
variates, mean and standard deviation of change distribution, and a map of detected changes for evaluation. The 
general procedure of the process is illustrated in Figure 2.  
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Figure 2. The process of analysis to compare the performance of transformed and untransformed images 



 
 

 
 

 
4.2.1. Pre-processing and Spectral Transformation 

Geotiff images of surface reflectance were extracted and reprojected from Universal Transverse Mercator (UTM) 48 
South to Geographic projection, WGS 84 datum.  The resulting images were cropped with a rectangular boundary to 
reduce image processing times (rectangle coordinates: upper left: 106.275, -6.555 and lower right: 107.150, -7.450). 
The TM images were stacked prior to transformation. The TC transformation for the Landsat TM5 images was based 
on Crist and Cicone (1984), while the TC transformation for Landsat 8 OLI was based on Baig et al. (2014).  The TC 
transformation generates three features, namely brightness, greenness, and wetness. Therefore, the set of indices we 
studied in this experiment was selected to be comparable with TC features, namely the Brilliance Index (BI), 
Normalised Difference Vegetation Index (NDVI), and Normalised Differenced Water Index (NDWI), which were 
calculated as follows: 
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4.2.2. IRMAD Comparison: Untransformed Surface Reflectance versus Tasseled Cap versus Set of Indices 

IRMAD was performed with four pairs of images and comparisons were targeted to differentiate the effect of spectral 
transformations and type of sensors on change detection performance.  Every pair of images was used to generate 
change maps directly from original surface reflectance or after being transformed into tasseled cap and the set of 
indices. Information about the image pairs is illustrated in Table 1. Each image pair spans six years between the first 
and second observations except for the pair composed of two OLI images, where the time span was only three years. 
The IRMAD process itself was evaluated to identify differences in how the techniques reached stable canonical 
correlations (i.e., number of iterations required). It is assumed that the stabilisation process is related to the quality of 
data, which is affected by any disturbances including geometric, atmospheric and radiometric differences, or the type 
of data being used.  
 

Table 1. Pairs of Landsat images (path 122, row 65) used for IRMAD processing 
Pairs Date-1 (t0) Date-2 (t1) Sensors (% cloud cover) Sun elevation of 

t0 and t1  
Sun azimuth of 

t0 and t1 
a 1991257 1997257 Both TM5 (10.8% and 0.4%) 52.5 and 54.6 74.3 and 73.6 
b 2000250 2006250 Both TM5 (2.1% and 7.1%) 54.3 and 58.0 68.4 and 65.9 
c 2007173 2013173 TM5 and OLI (2.9% and 20.1%) 47.6 and 48.9 42.8 and 40.9 
d 2013221 2016230 Both OLI (11.5% and 11.9%) 53.3 and 54.7 50.9 and 54.5 

Note: the date is in Julian date format YYYYDDD 
 
5. RESULTS 
5.1. Iterations Required to Reach Stable Canonical Correlation  

Figures 3 and 4 show the canonical correlation coefficients at each iteration of the MAD process. Stable coefficients 
of canonical correlation were reached more quickly on the transformed data than the original surface reflectance. 
IRMAD processing of the TC or set of indices started to stabilise the coefficient after 15 iterations or less while the 
surface reflectance stabilised after 25 iterations. The surface reflectance result is similar to that found by Canty and 
Nielsen (2008) who concluded that convergence was usually reached between 20-30 iterations. Moreover, the period 
of observation, which affects the diversity of atmospheric, radiometric or systematic differences between images may 
affect iteration convergence. The Landsat TM5 1991-1997 image pair converged more rapidly than the later pair 
(2000-2006). This observation indicates that more disturbances obtruded on the later pair than the earlier one.  There 
was a report of a severe floods occurred in Jakarta in 1996, 2002 and 2007 (Texier, 2008), indicating high rainfall at 
the corresponding years. It seems that worse atmospheric conditions were more likely to occur in the period of 2000-
2006 than 1991-1997.  
 
The different sensors also responded differently to IRMAD processing. Pairs composed only of Landsat TM5 data 
were less affected by disturbances. They required fewer iterations to reach stable canonical correlation in comparison 
to image pairs containing at least one Landsat 8 image.  This pattern applied to both transformed and untransformed 
images. Examining each spectral band of the images, it appeared that the longer the wavelength, the quicker stability 
was reached. In this case, spectral bands 5 (NIR) and 7 (MIR) of Landsat TM5 reached stable canonical correlation 
more quickly than the visible bands (blue, green and red). While the values of the canonical correlation coefficients 
for the visible bands were still fluctuating after 15-25 iterations, bands 5 and 7 resulted in a stationary canonical 
correlation coefficient. The pattern applied for both the TM5 and OLI sensors.  



 
 

 
 

 
Figure 3. The coefficient of canonical correlation resulting from each iteration of IRMAD processing for four 

image pairs of LANDSAT surface reflectance (Band 1, Band 2, Band, 3, Band 4, Band 5 and Band 7). 
 

 
Figure 4. The coefficient of canonical correlation from each iteration of IRMAD processing of the tasseled cap and 

set of indices for four Landsat sensor pairs. 



 
 

 
 

 
When image transformations were compared, the pattern shows that the set of indices seemed to reach stability more 
quickly than the TC image pairs.  As stated by Crist (1985), TC is generally influenced by atmospheric conditions. 
In the experiment, the effect of atmospheric conditions on green spectral bands which are used to form the brightness 
and brilliance indices was observable, particularly in the generation of the coefficient of canonical correlations as 
seen in the OLI sensor.  
 
5.2. IRMAD Statistics of Final Iteration 

Statistics describing IRMAD variates show the distribution of changes and the characteristics of change on the 
transformed and untransformed image pairs.  The change statistics are summarised in Table 2. Table 2 shows the 
value of MAD variates resulting from the different image pair comparisons for both untransformed and transformed 
image pairs. The number of MAD variates is the same as the number of variables input into the IRMAD 
transformation. Thus, Landsat surface reflectance image pairs produced six variates while tasselled cap or the set of 
indices generated three variates.  
 

Table 2. IRMAD statistics derived from surface reflectance, tasselled cap and set of indices. a denotes image pair 
1991–1997, b image pair 2000–2006, c image pair 2007–2013, d image pair 2013–2016 

Spec tra l a b c d a b c d a b c d

Mean B1 -0.36 -8.78 -6.17 -594.23 -0.829 -3.54 1.38 55.56 -0.9 -1.98 0.37 -0.39
B2 -0.37 10.24 14.41 377.72 0.367 1.27 -0.62 20.72 1.62 -0.03 0.31 -1.1
B3 -0.09 2.53 -3.26 -231.86 -0.045 0.11 0.16 -0.57 -0.2 -0.46 -0.28 -0.22
B4 0.03 -2.01 11.8 -782.97
B5 -0.33 -1.56 7.96 -61.92
B6 -0.07 0 1.26 133.54

Standard devia tio n B1 11.37 135.84 35.27 276.74 7.354 51.39 17.99 160.35 4.84 26.07 6.41 12.56
B2 6.85 61.29 46.65 245.45 2.415 16.61 8.32 47.52 4.98 4.53 3.41 12.1
B3 7.51 37.5 39.61 214.71 0.376 1.85 0.72 4.99 1.12 6.12 4.75 2.31
B4 3.77 30.51 24.73 350.44
B5 1.89 20.21 25.02 72.13
B6 0.37 1.73 6.95 67.84

Eigenva lue B1 99.99% 80.10% 45.20% 79.20% 100.00% 97.60% 94.30% 91.90% 100.00% 99.40% 78.80% 85.20%
(%) B2 0.00% 14.70% 36.90% 13.50% 0.00% 1.20% 5.60% 8.00% 0.00% 0.50% 18.10% 13.80%

B3 0.00% 3.80% 9.80% 5.40% 0.00% 0.40% 0.10% 0.10% 0.00% 0.10% 3.10% 1.10%
B4 0.00% 1.20% 6.80% 0.90%
B5 0.00% 0.20% 0.90% 0.60%
B6 0.00% 0.00% 0.40% 0.40%

P arameters
Surface  Reflec tance Tas s e lled cap Indices

 
 
The mean value of the MAD variates indicates the likelihood of change while the standard deviation suggests the 
spatial heterogeneity of the change. From the surface reflectance data, the mean of the MAD variates was smaller in 
TM5 than in OLI.  The image pair containing two OLI images (d) resulted in the largest mean compared to the pairs 
containing two TM5 images (a, b) or the combination of TM5 and OLI (c). The standard deviation of the MAD 
variates indicates that the OLI image pair generated more heterogeneous change events than TM image pair.  The 
heterogeneity may be due to sensor differences or the difference in atmospheric condition between those periods or 
the difference in actual changes.   
 
Comparing the means of the MAD variates derived from the original surface reflectance (SR) and those of its 
transformations, it is clear that indices produced relatively smaller variates than SR or TC. The difference between 
MAD variates resulting from transformed and untransformed data was demonstrated in the OLI sensor. This result 
suggests that surface reflectance generates the biggest variates while indices produce the smallest.  Comparing the 
transformation effect using the standard deviation (SD), it appears that the reduction of error from the first variate to 
the second in the set of indices was larger than in TC and seems more detectable in OLI than in TM. The SD that 
resulted from SR in the OLI sensor was 276, and TC transformation resulted in a value of 160, whereas the set of 
indices had a value of only 12. The standard deviation also decreased for the transformations of TM sensor images, 
but with a smaller reduction (see pair 19911̶997 or 20002̶006). 
 
As the eigenvalue represents the variability of data, the value can be denoted in its proportional variance.  In general, 
the eigenvalue of the MAD variates is ordered by decreasing variance (Table 2). The proportion of variance explained 
by the first MAD variate for surface reflectance tends to be smaller than for the transformed images. The first 
component (variate) usually represents the biggest variance of data, and indicate a condition that widely affects 
images. By comparing the distribution of change from the proportion of eigenvalue of MAD variates, it appears that 
TC generates the biggest common distribution in the first MAD variate for all data pairs. This means that the common 
‘changed’ proportion would likely be greater in TC than untransformed SR or the set of indices.  In contrast, specific 
change occurrences may be greater in SR and the set of indices.  



 
 

 
 

 
6. CONCLUSION 

The experiment demonstrates that transforming surface reflectance into TC or a set of indices may accelerate the 
stabilisation of the canonical correlation in the IRMAD process. However, careful examination of the proportion of 
cloud cover and the difference of illumination between data pairs is required. Users should be aware of this condition 
that might affect the result of the change detection. The number of iterations required to reach stable canonical 
correlation seems to be affected not only by transformation type and temporary atmospheric conditions, but also by 
the type of sensor and the reflectance wavelength. Indeed, the higher wavelengths required fewer iterations to reach 
the stationary canonical correlation compared to the visible bands, since they are not being affected by surface 
moisture.  
 
It appears that the result of MAD variates representing the change was influenced by the transformations.  It emerges 
that transformation is essential for time series analysis of images from the OLI sensor whereas it might be less 
important for TM images. OLI appears to result in a bigger mean difference and heterogeneous MAD variates 
compared to TM. However, employing surface reflectance of OLI might not yield a distinctive change.  A direct 
comparison of different sensors within a similar period is required to prove that the type of sensor influences change 
identification.  
 
These initial results require further examination, in terms of the accuracy of the change detection maps as well as 
identification of the driving forces behind change processes.  Ground truth data, official maps and information from 
respected institutions or high spatial resolution imagery from Google Earth may assist in this process.  
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