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ABSTRACT: Surface temperature distribution is a governing meteorological factor for studies investigating the 

hydrological and climatic behavior of a basin. In the Himalayan mountainous region, it is difficult to obtain the high 

resolution spatial records of the surface temperature because of the scarce and widely scattered meteorological 

stations. In this study, the potential of MODIS (Moderate Resolution Imaging Spectroradiometer) land surface 

temperature (LST) products such as MOD11A2 and MYD11A2 Collection 6 has been investigated for estimating 

accurate 8-Day minimum ground temperature (8DayMinT) values over Western  Himalayan region. The forward, 

backward and stepwise variable selection methods have been employed for 8 major variables (including: LST 

products (four variables), altitude, latitude, longitude, and Julian day) and regression models have been formulated 

for 8DayMinT estimations. The results show that the regional topography explains most of the differences between 

the MODIS LST and the ground temperature records derived from the 7 climate stations in the Himalayan region. 

The best results for 8DayMinT estimation has been achieved when a combination of all the 4 LST products of 

TERRA and AQUA, along with altitude, latitude and longitude data is employed. 

 Introduction 1.

The ground temperature (TG) that is usually measured at about 2m from the land surface as a point data with the 

help of automatic weather stations is an extremely important meteorological driver. Its application includes a wide 

range of areas like agriculture, hydrology, ecology, environment and climate change. In regions like Himalayan 

Mountains, there is a sparse network of ground-based weather stations mostly because of the inaccessibility of these 

areas. The interpolation methods to estimate temperature might not give the desired accuracy in such regions 

because of a high variability of terrain elevation (Vancutsem et al., 2010). 

Remote sensing data offers a huge potential to overcome this limitation with the availability of various satellite 

based Land Surface Temperature (LST) products, such as from Advanced Very High Resolution Radiometer 

(AVHRR), Visible Infrared Imaging Radiometer Suite (VIIRS), Advanced Along-Track Scanning Radiometer 

(AATSR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Spinning Enhanced Visible and 

Infrared Imager (SEVIRI), at a high spatial and temporal resolution often at free of cost (Liu et al., 2015; Noi et al, 

2016; Zou et al., 2014; Zhu et al., 2013). Among these, the MODIS sensor on board AQUA and TERRA satellites 

can provide daily LST data with a high temporal (four times per day, TERRA LST day-time, TERRA LST night-

time, AQUA LST day-time, AQUA LST night-time, with overpass local time at around 10:30 a.m., 10:30 p.m., 

1:30 a.m. and 1:30 p.m., respectively) and very high spatial resolution (1 km). Researchers from different regions of 

the world have stated that there is a strong linear correlation between MODIS LST and TG over many regions, e.g., 

in Africa (Vancutsem et al., 2010), in Portugal (Benali et al., 2012), over the U.S. and Canada (Zeng et al., 2015; 

Hachem et al., 2012, Gallo et al., 2011) and in China (Zou et al., 2014; Zhu et al., 2013). 

Zakšek and Homscheidt (2009) have presented a review of the methods used for estimation of TG based on LST. 

They have been divided into 4 types: simple statistical approaches, advanced statistical approaches, the 

temperature-vegetation index (TVX) approach and energy-balance approaches. Simple statistical approaches are 

usually based on a simple linear regression between the LST and TG. The difference between LST and TG is a 

strong function of the surface characteristics and the atmospheric conditions (Noi et al, 2016). Zhang et al. (2016) 

concluded that for daily TG estimation, TERRA LST and AQUA LST give the same results. Benali et al. (2012) 

showed that the combination of AQUA LST day-time and LST night-time gives a better accuracy of TG-max and 

TG-min estimation, respectively than TERRAs in Portugal. In contrast, Zhu et al. (2013) stated that TERRA LST 

day-time and TERRA night-time, were better than AQUA LST day-time and night-time for TG estimation. Noi et 

al. (2016) concluded that the AQUA LST night-time is the best predictor for both TG-max and TG-min estimation 

and best estimates of TG were obtained using a multiple regression approach using all the 4 LST products. These 

differences arise mainly on account of the geographical location of these studies affecting the relationship between 

LST products and also the time-period of the study. In some regions, the difference between LST and TG is high 
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Figure 1. Study Area: Indian Part of Satluj Basin and 

the location of the meteorological stations. 

(Lai et al., 2012; Gallo et al., 2011), whereas in some regions it is comparatively small (Noi et al., 2016). The 

detailed information of this difference, as well as the possible causes of this difference, are still limited and needs to 

be studied. 

There are few studies over the Himalayan region that have used satellite-based LSTs to derive ground temperature 

(TG) (Zhou et al., 2016; Rafiq et al., 2014), however, an integrated approach using both TERRA and AQUA LST of 

day-time and night-time for TG estimation (using all four MODIS LST datasets) has not been employed in these 

studies. Therefore, in order to better understand the association between TG and MODIS LST products, in this 

study, the relationship has been analyzed between TG and both TERRA LST and AQUA LST products for the 

Himalayan region which has scarce availability of the meteorological data. This study has been limited to the 

estimation of 8-day minimum ground temperature (8DayMinT) based on the 8-day AQUA and TERRA MODIS 

LST products, mainly for the purpose of employing the 8DayMinT to correct the MODIS obtained snow-cover 

products (MOD10A2 and MYD10A2).  

 Study Area and Datasets 2.

 Study Area  2.1
The study area (Fig. 1) is a part of the Satluj Basin limited to the Indian Territory of the Western Himalayas. The 

total geographical area of Satluj Basin up to Bhakra dam is about 56,980 km
2
, of which about 37,153 km

2
 lies in 

Tibet. The remaining about 19,827 km
2
 area lies in the Indian Territory. The Indian part of the Satluj basin is 

elongated in shape. Elevation of the catchment 

varies widely from about 500 m to 7,000 m 

above msl, although only a very small area 

exists above 6,000 m. The mean elevation of the 

basin is about 3,600m. The gradient is very 

steep near its source and gradually reduces 

downstream. Owing to the large differences in 

seasonal temperatures and a great range of 

elevation in the catchment, (BBMB, 1988), this 

basin is a representative of the mountainous 

Western Himalayan basins. Therefore, it has 

been chosen as the study site.  

 Meteorological Data 2.2
Figure 1 also shows the locations of 7 

meteorological stations located in this region. 

These stations are monitored by Bhakra Beas 

Management Board (BBMB) and Irrigation and 

Public Health (IPH) Himachal Pradesh. These 

stations provide data of daily minimum and 

maximum air temperature. The location and 

elevation of these stations are shown in the 

Table. 1. The analysis in this study has been 

done for the year 2006. The daily observed 

minimum TG, has been used to identify the 

8DayMinT as the minimum value of the 

observed minimum TG in a static 8-day window, 

corresponding to the 8-Day MODIS LST 

window. Therefore there are 46 values of 

8DayMinT for every meteorological station in a 

year.  

 

 

Table 1. Location and Altitude for the available Meteorological Stations 

S.No. Station Name Latitude (°) Longitude (°) Altitude (m) 

1 Kaza 32.1763 78.1044 3541 

2 Rakchham 31.3919 78.3543 3131 

3 Namgia 31.8101 78.6563 2843 



 

4 Kalpa 31.5439 78.2554 2731 

5 Kasol 32.0117 77.3146 1580 

6 Rampur 31.4517 77.6330 972 

7 Suni 31.2303 77.1642 765 

 Remote Sensing Data 2.3
MODIS LST products (h24v06, Collection 6) such as MOD11A2 and MYD11A2 8-day land surface temperature 

and emissivity from the TERRA and AQUA satellites, respectively covering the Western Himalayas for the year 

2006 have been used in this study. The 8-day data are generated from the daily 1-kilometer LST products 

(MOD11A1 and MYD11A1) and stored on a 1-kilometer Sinusoidal grid as an average value of daily LSTs during 

an 8-day period. There exist 4 LST data records per day, two from the TERRA satellites and two others from the 

AQUA satellites, which pass over the study site (local solar time) around 10:30 a.m., 10:30 p.m. and 1:45 a.m., 1:45 

p.m., respectively. These times correspond well with the daily maximum and minimum TG. In total, there are 184 

images (in HDF format, for the year 2006) downloaded from the Level-1 and Atmosphere Archive and Distribution 

System (LAADS) Distributed Active Archive Center (DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/). 

 DEM 2.4
Elevation data is obtained from ASTER Global DEM. This data is available from the U.S. Geological Survey 

(USGS) with a spatial resolution of 30 m. These altitude data were resized to 1-km resolution using the nearest 

neighbor resampling technique in order to be associated with MODIS LST data. 

 Methodology 3.

A multivariate linear regression (MLR) analysis has been used for estimation of 8-Day minimum ground 

temperature from MODIS LST products (both TERRA and AQUA). MLR approach is chosen because it can be 

applied for sparse meteorological station networks like in the Himalayas. Although some interpolation methods 

may give a higher accuracy results, they are not possible for regions with poorly-distributed station networks or 

physical models that require an unreliable amount of input data (Collins, 1995). In addition to the 4 LST products 

(MODIS Aqua, Terra – Day and Night), the other predictors employed to describe the relationship between LST 

and TG are altitude, latitude, longitude, and Julian day. Altitude (Alt) derived from the DEM is an important 

predictor for temperature since higher elevations are associated with lower temperatures. Latitude and Longitude 

are the location parameters that influence the spatial variation of the temperature estimates. Julian day (JD) serves 

as a proxy for the fraction of solar energy absorption during the day and emitted energy during the night, 

influencing the diurnal amplitude of TG throughout the year. 

The complete methodology is presented in Fig. 2. All the MODIS data were downloaded from USGS in HDF 

format (Hierarchical Data Format), with each file containing 12 data layers, the MODIS Reprojection Tool (MRT) 

has been used to extract the corresponding bands (LST_Day_1km and LST_Night_1km) from both MOD11A2 and 

MYD11A2. MODIS LST day and night was extracted from MOD11A2 and MYD11A2 data for the pixels in which 

the meteorological stations are located. The pixels that are lightly or moderately cloud contaminated will create 

errors in the clear-sky LST (Wan, 2006) and hence, all unrealistic LST data that had values greater than 100°C and 

below −50°C has been removed.  

In order to predict the most significant predictors out of the 8 parameters (LST products (four variables), altitude, 

latitude, longitude, and Julian day), as well as their order of significance, the forward, backward and stepwise 

variable selection method proposed by Noi et al. (2016) has been used. Forward selection starts with no variable in 

the model (intercept only model). In the next steps, the most significant variables are added to the model one by 

one. The process stops when all of the variables not in the model have a p-value greater than 0.15. Backward 

elimination starts with the model including all variables. In the next step, the least significant variable will be 

removed. The procedure continues until all of the variables in the model have p-values less than or equal to 0.15. 

The stepwise method adds or removes a variable in each step, depending on its p-value. This process continues until 

all variables within the model have a p-value ≤0.15, and all of the variables that were not in the model have a p-

value >0.15. 

Afterwards, different models have been formulated for 8DayMinT estimation using the identified important 

predictors. The model parameters for each model have been estimated using 70% dataset for the year 2006 and 

these models have been tested using the remaining 30% data for the year 2006. These model evaluation has been 

done using the coefficient of determination (r
2
), the root mean square error (RMSE) and the mean absolute error 

(MAE). Because RMSE is very sensitive to outliers, MAE was chosen as an additional measure of the model 

quality. 

https://ladsweb.modaps.eosdis.nasa.gov/
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Where 𝑇𝑎,𝑖 is the observed land surface temperature from weather stations and 𝑇𝑒𝑠,𝑖 is the corresponding land 

surface temperature estimated using the linear regression analysis methods. 

 

Figure 2. Methodology Flowchart  

 Results and Discussions 4.

 Variable Selection and Model Development 4.1
The results of forward, backward and stepwise selection indicates that the most significant predictors in their order 

of significance are: Terra_Night LST, Aqua_Night LST, Latitude, Aqua_Day LST, Longitude, Altitude, and 

Terra_Day LST. The Julian Day is found to be an insignificant predictor for MLR based estimation of 8-Day min 

Temperature because of its very low p-value. 

Based on the above analysis, the following models have been formulated for the 8DayMinT estimation: 

Model 1: 8DayMinT = a×Terra_Night + b                  (3) 

Model 2: 8DayMinT = a×Aqua_Night + b                        (4) 

Model 3: 8DayMinT = a×Terra_Night + b×Aqua_Night + c                   (5) 

Model 4: 8DayMinT = a×Terra_Night + b×Aqua_Night + c×Lat + d                      (6) 

Model 5: 8DayMinT = a×Terra_Night + b×Aqua_Night + c×Lat + d×Aqua_Day + e                    (7) 

Model 6: 8DayMinT = a×Terra_Night + b×Aqua_Night + c×Lat + d×Aqua_Day + e×Lon + f                 (8) 

Model 7: 8DayMinT = a×Terra_Night + b×Aqua_Night + c×Lat + d×Aqua_Day + e×Lon + f×Alt + g                  (9) 

Model 8: 8DayMinT = a×Terra_Night + b×Aqua_Night + c×Lat + d×Aqua_Day + e×Lon + f×Alt + g×Terra_Day +h         (10) 



 

Where, a, b, c, d, e, f, g, h are the respective model coefficients.  

 8-Day T-min Estimation 4.2

The parameters for all the 8 models are determined when the Models 1-8 were applied to the calibration dataset 

(70% data for the year 2006). The results of this analysis is shown in Table 2.  

Table 2. Parameters of the Models for 8DayMinT estimation obtained during model development 

 
 Estimate Std. Error t-value p-value 

Model 1 
(Intercept) -0.5920 0.3322 -1.7820 0.0759 

Terra_Night 0.9292 0.0279 33.2570 0.0000 

Model 2 
(Intercept) 1.1047 0.3330 3.3170 0.0010 

Aqua_Night 0.8978 0.0301 29.8310 0.0000 

Model 3 

(Intercept) -0.2473 0.3504 -0.7060 0.4809 

Terra_Night 0.6878 0.0908 7.5730 0.0000 

Aqua_Night 0.2503 0.0897 2.7890 0.0057 

Model 4 

(Intercept) -81.2692 28.3368 -2.8680 0.0045 

Terra_Night 0.6850 0.0896 7.6470 0.0000 

Aqua_Night 0.2824 0.0892 3.1650 0.0017 

Latitude 2.5570 0.8942 2.8590 0.0046 

Model 5 

(Intercept) -103.5669 29.2011 -3.5470 0.0005 

Terra_Night 0.7917 0.0970 8.1610 0.0000 

Aqua_Night 0.2793 0.0881 3.1680 0.0017 

Latitude 3.3182 0.9278 3.5760 0.0004 

Aqua_Day -0.1156 0.0431 -2.6860 0.0077 

Model 6 

(Intercept) -354.7507 55.2476 -6.4210 0.0000 

Terra_Night 1.0040 0.1007 9.9690 0.0000 

Aqua_Night 0.3492 0.0849 4.1140 0.0001 

Latitude 3.9378 0.8903 4.4230 0.0000 

Aqua_Day -0.2719 0.0506 -5.3750 0.0000 

Longitude 2.9971 0.5699 5.2590 0.0000 

Model 7 

(Intercept) -416.8000 74.2400 -5.6140 0.0000 

Terra_Night 0.9666 0.1050 9.2100 0.0000 

Aqua_Night 0.3475 0.0848 4.0970 0.0001 

Latitude 4.4330 0.9736 4.5530 0.0000 

Aqua_Day -0.2560 0.0521 -4.9110 0.0000 

Longitude 3.6130 0.7527 4.8000 0.0000 

Altitude -0.0007 0.0006 -1.2500 0.2120 

Model 8 

(Intercept) -423.6000 74.3500 -5.6980 0.0000 

Terra_Night 0.9235 0.1101 8.3850 0.0000 

Aqua_Night 0.3242 0.0867 3.7410 0.0002 

Latitude 4.7970 1.0130 4.7330 0.0000 

Aqua_Day -0.3214 0.0732 -4.3940 0.0000 

Longitude 3.5570 0.7530 4.7240 0.0000 

Altitude -0.0010 0.0006 -1.6110 0.1084 

Terra_Day 0.1086 0.0853 1.2740 0.2038 



 

 

Figure 3.The correlation between estimated and observed 8DayMinT using the models 1 to 8 for test dataset. 

The values of r
2
, RMSE and MAE is also shown. The dashed black shows the 1:1 line. The solid green line 

corresponds to the regression line. 

Table 3. Summary of the model performance for estimation of 8DayMinT during testing 

Statistics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

r2 0.79 0.83 0.82 0.83 0.84 .86 .86 .86 

RMSE 4.08 3.65 3.8 3.68 3.55 3.36 3.3 3.31 

MAE 3.17 2.91 2.95 2.87 2.8 2.63 2.6 2.59 

 

Figure 3 and Table 3 gives the summary of results when all the models are applied to the validation/test dataset. , 

i.e., remaining 30% data for the year 2006. The relationship between ground observed and estimated 8-day T Min 

for the validation dataset has been analyzed using the coefficient of determination (r
2
), root mean square error 

(RMSE) and mean absolute error (MAE) for each model. 

From Figure 3 and Table 3, it is observed that all models give almost similar results of 8-DayTmin estimation. 

However, there is a slight improvement in the accuracy from (r
2
 = 0.79, RMSE = 4.08, MAE = 3.17) when using 

only 1 variable, i.e. Terra Night (Model-1) to (r
2
 = 0.86, RMSE = 3.31, MAE = 2.59) when using 7 variables in 

Model 8.  

 



 

5. Summary and Conclusions 

In this study, the relationship between 8DayMinT and four LST products (Terra_Day, Terra_Night, Aqua_Day, 

Aqua_Day) along with 4 auxiliary variables namely, latitude, longitude, altitude and Julian Day has been analyzed 

and discussed. Important variables out of these 8 have been identified based on backward, forward and stepwise 

selection methods. Based on the identified variables which have significant relationship with the 8DayMinT, 

multiple linear regression analysis has been carried out to estimate 8DayMinT using eight different models. The 

best estimates of 8DayMinT were achieved when all four LSTs have been combined with location parameters and 

altitude of the station (Model 8). Hence, it can be concluded that, in order to achieve the best results in terms of TG 

estimation (in this case for 8DayMinT), other variables like longitude, latitude, and altitude, should be taken into 

consideration and put into the models. However, to check the consistency of the obtained results further analysis 

needs to be carried out for different locations and for a longer time period. 
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