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Abstract

Local stereo matching algorithms use winner-take-all approach to get the disparity. Many times they end up at a
erroneous result. To solve this, in the present work, a novel stereo image matching technique has been developed that
identifies the most likely local minimum from the several possible local minima. The technique uses properties of
the physical continuity of the land surface characteristic by the watershed segmentation applied to the disparity space
volume. This helps to minimize the search for the local minima for matching. The matching is further improved by
combining the watersheds of two stereo pairs from the tri-stereo. In the present study, experiments have been carried
out using the standard Middlebury stereo datasets and remotely sensed tri-stereo images. Based on this approach the
experiments are successfully carried out using the test dataset. The experimental results are compared with the results
from the currently contemporary techniques of Dynamic Programming and Semi-Global Matching which resulted in
2-10 % improvement in density of matched points for different dataset.
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Introduction

Extraction of 3D information from a stereo pair has its importance in many fields such as digital photogrammetry,
computer vision, robotics, intelligent vehicle navigation, etc. Based on the legacy of the optical imaging, co-linearity
condition is established between object and image space. It relates the image point in the image space, the optical
centre common to both images and the object space and the object point in the object space. The relation developed
is then used to convert the disparity in the position of the image feature on the ground in a stereo pair (conjugate
points) to the 3"¢ dimension of the object space using the parallax equation. The stereo matching process thus needs
to establish the correspondence in the stereo pair. It is thus imperative that the accuracy and the quality of the 3D
measurements depend on the density and accuracy of these points that result from the processes of matching strategies
used.

The problem of stereo correspondence is solved using two broad strategies, Area-Based (Remondino et al.,2014)
and Feature-Based (Jazayeri and Fraser, 2010). In the case of the photogrammetric applications, the feature-based
matching is used for the image transformation and the area-based methods are used for dense matching. Based on the
work by |Alobeid| (2011}, the most popular algorithms used in the photogrammetric applications for dense matching
are Least Square Matching (Gruen,|1985)), Dynamic Programming (Veksler, 2005) and Semi-global Matching (SGM
) (Hirschmiiller and Scharstein, 2008). There are many free and open source, and commercial software that are based
on these strategies (Remondino et al., [2014). SGM is the most recent and robust algorithm of all (Hirschmiiller}
2011). After the advent of tri-linear scanners on satellite platforms these algorithms are seen to be modified for tri-
stereo matching (Zhang and Gruen, [2006) (Mozervo et al., [2009). There are not many methods that are proposed
for tri-stereo matching and even if proposed, are the extension of the binocular stereo matching methods (Tack and
Gossens, [2012). Also, these methods are more constrained by the multi-resolution and the geometrical constrains
enforced by imaging geometry (Baltsavias et al.,[2006) . In contrast to the above approaches, there is an altogether
different class of algorithms that uses segmentation-based stereo matching (Tan et al.,[2014). In the proposed work
the same strategy has been used on the disparity space image (Intille and Bobickl [1994) for the tri-stereo image
matching.

The local stereo algorithms employ the block matching using correlation-based methods, such as Normalized
Cross Correlation (NCC), Sum of Squared Difference (SSD), Mutual Information (MI), etc. In these methods, the
disparity is computed using the “winner-takes-all” optimization, which sometimes gives incorrect results due to steep
slope, high contrast object in the neighborhood, or a large search range. By applying global stereo matching al-
gorithms, the correspondence of the conjugate points is solved, using the global optimization by applying dynamic



Table 1: Details of the datasets.

Mission Sensor Image ID Image Name
CHI1 T™MC TMC_NRA_20090418T093900690.IMG
T™MC TMC_NRA_20090418T093900690.IMG  Gassendi G
TMC TMC_NRA_20090418T093900690.IMG
CH1 TMC TMC_NRA_20090418T095023392.IMG
T™MC TMC_NRA_20090418T095023392.IMG  Marius D
TMC TMC_NRA_20090418T095023392.IMG
ALOS PRISM ALPSMB201033270
PRISM ALPSMF201033160 Mumbai 1
PRISM ALPSMN201033215 Mumbai 2
Cartosat-1 PAN 075259000201 Ground truth for
PAN 075259000202 Mumbai 1, Mumbai 2
LORC LOLA LDEM 1024 00N_15N_300_330 Ground truth for Gassendi G
LOLA LDEM 1024 30S-15S-300-330 Ground truth for Marius D
Middlebury Lampshade Lamp
Stereo Rocks Rocks
ISPRS-EuroSDR  Aerial 40-0313_PAN Miinchenl
project Sensor 40_0314_PAN Miinchen2

DMCII230 40.0315_PAN

programming, belief propagation, graph-cuts, etc. where the smoothness and penalty terms take care of these prob-
lems. For local methods, this can be solved efficiently if more constraints are used. One of the widely used constraints
is the epipolar constraint. For the local image matching, this epipolar constraint has to be augmented with additional
steps due to the resulting streaking effect because the disparity is determined for a scan line independently. An addi-
tional constraint can be utilized if instead of two-view stereo a triplet of the image is used. Some of the approaches
are found in the literature on the use of triplets for 3D modelling as by |Raggam| (2006)); [Zhang and Gruen| (2006),
which according to [Tack and Gossens| (2012) are only the extensions of the standard stereo pair matching based
approaches. They suggested a composite approach based simultaneous use of the tri-stereo images for the best fit
of three convergent image rays instead of the trivial intersection of two lines and incorporation of more images with
different viewing angles to increase the probability of a successful match, being a unique and a correct solution.

Overall, from the literature, it is observed that there is a need to investigate the issues of (a) Limitation of the
WTA to get a disparity at the global minimum for an ill-posed stereo matching problem. (b) A proper approach to
make adequate use of the epipolar based local stereo matching using Disparity Space Image, and (c) Integration of
the redundant information from the triplet of image to arrive at the optimized solution for the disparity estimation. In
the present work, an attempt is made to develop a novel approach based on local minima of the stereo matching cost
to determine the disparity where the global minimum deviates from the actual disparity as it exists in the real world
setting. The hypothesis has been investigated using the controlled experiments on the stereo triplets with reliable
ground truth. From the experiments, it has also been observed that application of the watershed segmentation to
the disparity space image (DSI) can effectively extract the local minima and therefore, can be utilized for extracting
the local minima. |Tan et al.| (2014) used watershed transformation for the stereo matching, where they applied this
transformation on stereo pairs whereas, in the present studies the idea is extended to DSI.

Test Datasets

The experiments are performed for the remotely sensed images from the aerial and the satellite platforms, and the
standard stereo images from Middlebury stereo dataset. In all, eight datasets are used for experimentations from four
different sources. Two dataset namely Gassendi G and Marius D are from CH-1 mission’s TMC sensor that covers
lunar craters. Next two dataset namely Mumbail and Mumbai2 are from ALOS mission’s PRISM sensor that covers
urban and hilly terrain near Mumbai. The other two dataset Miinchen1 and Miinchen2 are very high-resolution aerial
images that contain urban area of Miinchen (Munich) city, obtained from EuroSDR project (Haala,[2013)). The final
two dataset are from Middlebury stereo dataset that cover indoor scene. For the lunar data, DSM from the same source
is used as ground truth. For ALOS PRISM, DSM generated from Cartosat-2 is used as the reference. For Miinchen
dataset ground truth is available from the same source. Middlebury dataset also provides ground truth. Table|[I] gives
the details of the dataset and Figure|l|shows Nadir (centre) image of the triplet.



Figure 1: Nadir (Centre) view of Dataset Used (A) Gassendi G Crater and (B) Marius D Crater from CH-1 TMC (C)
Mumbail and (D) Mumbai2 from ALOS PRISM (E) Miinchen1 and (F) Miinchen2 from EuroSDR dataset (G) Rock
and (F) Lamp dataset from Middlebury stereo dataset.

Methodology for Triplet Matching

The methodology is divided into two sub-problems. The first one is the initial matching and then the disparity
refinement. In the first step the Initial Correct Points (ICPs) are extracted and then density is increased by finding the
best solution from various Probable Matches (PM). The work flow for determining ICP and PM is shown in Figure

Once the images are resampled the next stage is triplet matching, the following steps discuss the process. The
work-flow for determining ICP and PM is shown in Figure 2]

1. Disparity Space Image (DSI) Generation: Using Equation q the stereo matching cost for a pixel in the left
image to all the pixels on its conjugate epipolar line in the right image is determined. This is carried out for all
the pixels in the left scan line (7o) and the cost is stored in DSL. In Figure (A-B) left input image, and ground
truth. Figure [3](C) shows the DSI for the scan line highlighted in Figure [3](A).

Clio, j,d) = > _[1(i0, 5) — I2(i0, 5 + )] $))

yew

where, y € {1,2,3...dmax}

2. Cost volume Generation: The process is carried out for all the scan lines in the image and thus a cost volume
is generated for left-centre and the another one for the centre-right stereo pair.

3. Initial Disparity: Due to virtue the in which the cost is stored in the DSI, the forward (left to right) stereo
matching cost is stored in the columns and the reverse (right to left) stereo matching cost is stored in the rows.
Figure [3] (D) shows initial disparity for complete image and Figure 3[E) red dots shows the initial disparity
obtained in the forward direction for DSI. The alternative way to determine the two initial disparities in the
forward and the reverse direction for each pixel are given as in the following equation.

Dr(ig,j) = argmin DS (ig, j, d) 2)
d

Dr(io, j) = argmin DS (ig, j, d) 3)
J
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Figure 2: Work-flow for determining PM and ICP.
4. Initial Correct points (ICP): The disparities that are Left-Centre-Right Consistent(LCRC) as given in the fol-

lowing equation are termed as ICP, these are represented as red points in Figure [3|(F).

LCRC = — | LRC). — LRC.,, | )

where, the left-right consistent disparities (LRC) are given in Equation @) and LRC). and LRC.,, represents
disparities obtained from left-centre and centre-right pair.

LRC = — | Dr — Dg | &)
In above Equations @) and (B) the value of LCRC and LRC is set to ‘0’.

5. Probable Matches (PM) : The PM are local minima obtained from watershed transformation (WST) using
Meyer’s algorithm (Meyer, [1994) applied to inverted DSI. (Watershed lines connect local maximum of the
terrain and as we require local minimum we inverted the DSI). Figure [3| (F) black line shows the watershed
lines for DSI in Figure [3| (E).

6. Secondary disparity using watershed : The final step is to find the disparity at the locations where ICP are
absent. The problem is similar to find a shortest path between ICP which is constrained by the watershed line.
The path between the two ICP is the shortest geodesic path. To fill these holes, the discontinuity in the profile
and its immediate left and right neighboring ICP are selected. The geodesic distance is determined between
these two ICP that is constrained by the existing possible paths given by PM. The path with the least geodesic
distance is selected as the disparity. The shortest path selection using geodesic distance is shown in Figure ??.
This process is followed for each scan line and the disparity map is generated for the complete set of the image
as shown in Figurdd[(A)

7. Final disparity using watershed : The disparities are determined for each scan line without taking in considera-
tion to adjacent scan lines. Therefore, a streaking effect is observed. To avoid the error and enforce smoothness
in the obtained disparities in a scan line to the adjacent scan lines, disparities are determined in four different
directions Figure ] (A-D) and the mode of these four disparities is considered as the final solution Figure | (E).

The limitation with the best path is that it is not always a unique one, and therefore, at many places an error is
observed. This is more prominent at the depth disconnectedness and the smooth regions. To remove these errors, the
disparity obtained is refined. This final step of disparity refinement is detailed in the following section.
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Figure 3: (A) Input images from Middlebury stereo dataset (B) Ground truth (C) Initial disparity (D)z,. — x; DSI for
the scan line highlighted in (E) x; — x4 DSI for the scan line highlighted in (c) with the global minimum of each
column as initial disparity for that column (F) Watershed transformation applied to above DSI showing the watershed
lines (local minima) in black and LRC consistent matches in red.
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Figure 4: Results on Mumbail and Lamp dataset.

Results and Analysis

The proposed method determines the disparity per scanline hence, the methods that are suitable for comparison are
scanline based stereo matching methods. To evaluate the proposed method, it is compared with the three scanline
based methods, namely Dynamic Programming (DP), Semig-lobal Matching (SGM) and basic block matching (BM)
technique. Eight different datasets cover a variety of features with a wide range of disparity and complexities. From
the results obtained by applying for the proposed work, it has been observed that after considering ICP as correct
match a significant number of correct points are added using PM match. The relative error from two observations has
been reduced, as the points to be considered has already been filtered using Left-Right Consistency (LRC) check. The
results for datasets with different resolutions are obtained non-consistent. The obtained results can’t be generalized
and therefore these are discussed in according to the dataset used.

Here remotely sensed datasets of three different resolutions are used. The ground resolution of ALOS and CH-
1 are in meters, in these cases the results from proposed method outperform the results from the other methods.
The accuracy is increased by 4-8 % for different datasets with respect to SGM and by 20 % with respect to DP.
As observed from the results obtained from Miinchen2 dataset of 10 cm resolution the density of the points by the
proposed method is of concern. For Miinchenl the accuracy of the proposed method is 2 % greater to SGM and for
Miinchen2 SGM is better to the proposed method by 6%. This can be improved by considering more directions. It
can be thus concluded that the proposed method performs best at coarse resolution. For Middlebury dataset, SGM
performs better at smooth regions with respect to the proposed method as observed from Lamp dataset by 6%. For



Table 2: Quantitative summary of correct matches obtained by various techniques for tri-stereo matching Matches.

Dataset Ground Size % Correct Matches
Resolution BM DP SGM Proposed Stereo
Matching Method
1 Direction 4 Directions
Lamp - 1031 x 1031 652 712 951 75.8 84.3
Rock - 1031 x 1031 920 935 97.4 94.2 96.1
Miinchenl 0.1 m. 1164 x 800 81.2 88.0 89.6 84.3 85.1
Miinchen2 0.1 m. 1164 x 800 747 81.0 89.1 71.2 75.0
Mumbai 1 2.5m. 2200 x 1851 742 877 912 92.3 95.0
Mumbai 2 2.5m. 1700 x 1851 68.1 91.6  92.0 91.2 91.8
Marius D 5.0m. 820 x 820 812 772 87.0 87.6 94.7
Gassendi G 5.0 m. 820 x 820 83.2 75.0 832 90.0 93.3

textured regions as observed from rock dataset both the methods, SGM and the proposed give the accuracy of 97 %.
The probable reason of comparatively poorer results at smooth regions in higher resolution images is due to the fact
that the watersheds from DSI obtained these images are too close, and they deviate the shortest path which eventually
led to the error. For standard Middlebury images, SGM gives the best results.

In Table [2] the quantitative comparison of the proposed method has been presented with BM, DP and SGM. As
there in no direct method to integrate the tri-stereo matching for these methods, the disparities are determined for both
the views and the best disparity is considered for comparison to the proposed method. The results suggest for all the
datasets that the proposed method outperforms traditional BM and DP and gives similar results as compared to the
SGM. This is evident as both the algorithms consider different directions for determining the correct disparity.

This was a quantitative analysis. The results obtained are shown in Figure 5] To evaluate the results obtained
qualitatively different regions of the images are chosen, and the results are compared. Table 3] gives the summary of
the results for various regions in various images. Various features that are common to remotely sensed images are
identified and the performance of all the algorithms are evaluated. In most of the cases the proposed algorithm gives
similar results to the SGM as expected as it is similar to SGM except that in SGM the cost is determined for each
pixel in the cost volume and its minimum is the solution whereas in the proposed method, only the local minima
that are corresponded by the watershed line is the solution. The quality of matches at various topological features
are investigated, and it has been observed that for all types of complexities the SGM and the proposed method gives
best results. They can handle errors due to non-planer features, and gives correct matches to building facades as well.
The object boundaries are also well preserved as presumed. As the continuity and smoothness in the four different
directions is preserved it easily handles the mismatch that generally occurs due to repetitive patterns. The method is
capable enough to deal with the complex structures such as trees similar to SGM. The method has all the merits of
the SGM and outperforms it in terms of speed. As in the case of SGM, every pixel in the cost volume is considered
for the cost the aggregation whereas, in the proposed method there is no aggregation and the search is limited to the
local minima.

Conclusion

In the stereo matching using winner-take-all approach, the global minimum of stereo matching cost is considered as
the correct disparity. There are instances when this criterion may end up in an error, such as when the image has a
large search range or has similar artifacts with very high contrast as compared to neighboring pixels. To solve this
problem, in the present thesis, a method is formulated that considers the local minima of the cost function to give the
correct disparity based on delineation of the local minimum that corresponds to the correct match.

1. It has been observed that the watershed lines, when extracted from the disparity space image, are co-located
with the local minima, and hence, the watershed segmentation on the disparity space image can be used to de-
lineate local minima. The advantage of using watershed segmentation is that the watershed lines are connected,
whereas the local minima are disjoint. The correct watershed line is determined using information from the
initial correct matches and to traverse the shortest path for locations where such matches are absent. This also
enforces the continuity constraint while determining the disparity.
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Figure 5: Results obtained for Miinchenl Miinchen2 Mumbai2 and Marius D crater. (with disparity range). Results
shows disparity maps obtained from BM, DP, SGM and Proposed method.



Table 3: Summary of qualitative analysis of the matching algorithms

Regions BM DP SGM Proposed
1 Planer features Correctly Correctly Correctly Correctly
(ground,rooftop) Mapped Mapped Mapped Mapped
2 Non-planer features  Incorrectly Correctly Correctly Correctly
Mapped Mapped Mapped Mapped
3 Buildings Fagade Error Sharp, Recovered Recovered
(side walls) streaking effects
4 Horizontal Error Sharp Recovered Recovered
Discontinuities streaking effects
5 Texture less regions Errors Errors Recovered Recovered
6 Continuous textured  Errors Errors Recovered Recovered
regions
7 Region boundaries Errors Recovered in the Recovered in ~ Recovered in
horizontal direction  all directions  all directions
8 Performance speed 1 2 4 3
ranking
9 Trees Errors Errors Extracted Extracted
10 Repititive Extracted streaking Extracted Extracted
patterns within limit  effects

2. To consider the smoothness of the surface in different directions and to get rid of the streaking effect (as in
the case of dynamic programming approach), the disparity is determined in four directions similar to the semi-
global matching approach. Therefore, at a given pixel location we have four disparities that correspond to the
shortest path based approach in that layer. To find the correct disparity, out of these four ‘mode’ operation is
used.

3. It has been observed that in the smooth regions, the shortest path may not be unique and hence, leads to incorrect
disparity. In such cases, the disparity can be refined using connectivity information of the local minima and the
global minimum from the triplet of images using the two disparity space images as evident from the present
studies wherein it considers the connectivity of these probable matches with the initial correct points. It has
been observed that using this measure there is a significant increase in the number of correct matches at the
smooth regions.

4. As the future scope of developments on these lines, the distribution of the matches can be considered and
quantitative analysis can be carried out using high-resolution ground truth from other sensors. In the present
work, a possible stereo pair of the left and right image has not been used since they need special treatment due
to large baseline, however a methodology can be developed for this pair.
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